Abbott LF, Nelson SB. (2000). Synaptic plasticity: taming the beast. Nature neuroscience. 3 Suppl [PubMed]
Burkitt AN, Meffin H, Grayden DB. (2004). Spike-timing-dependent plasticity: the relationship to rate-based learning for models with weight dynamics determined by a stable fixed point. Neural computation. 16 [PubMed]
D'Albis T, Kempter R. (2017). A single-cell spiking model for the origin of grid-cell patterns. PLoS computational biology. 13 [PubMed]
Davison AP, Frégnac Y. (2006). Learning cross-modal spatial transformations through spike timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Howard AL, Neu A, Morgan RJ, Echegoyen JC, Soltesz I. (2007). Opposing modifications in intrinsic currents and synaptic inputs in post-traumatic mossy cells: evidence for single-cell homeostasis in a hyperexcitable network. Journal of neurophysiology. 97 [PubMed]
O'Donnell C, Nolan MF, van Rossum MC. (2011). Dendritic spine dynamics regulate the long-term stability of synaptic plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]
Rabinowitch I, Segev I. (2006). The interplay between homeostatic synaptic plasticity and functional dendritic compartments. Journal of neurophysiology. 96 [PubMed]
Rabinowitch I, Segev I. (2006). The endurance and selectivity of spatial patterns of long-term potentiation/depression in dendrites under homeostatic synaptic plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Renart A, Song P, Wang XJ. (2003). Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron. 38 [PubMed]
Watt AJ, Sjöström PJ, Häusser M, Nelson SB, Turrigiano GG. (2004). A proportional but slower NMDA potentiation follows AMPA potentiation in LTP. Nature neuroscience. 7 [PubMed]