Banitt Y, Martin KA, Segev I. (2007). A biologically realistic model of contrast invariant orientation tuning by thalamocortical synaptic depression. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]
Basalyga G, Salinas E. (2006). When response variability increases neural network robustness to synaptic noise. Neural computation. 18 [PubMed]
Beardsley SA, Vaina LM. (2001). A laterally interconnected neural architecture in MST accounts for psychophysical discrimination of complex motion patterns. Journal of computational neuroscience. 10 [PubMed]
Blumenfeld B, Bibitchkov D, Tsodyks M. (2006). Neural network model of the primary visual cortex: From functional architecture to lateral connectivity and back Journal of computational neuroscience. 20 [PubMed]
Cai D, Rangan AV, McLaughlin DW. (2005). Architectural and synaptic mechanisms underlying coherent spontaneous activity in V1. Proceedings of the National Academy of Sciences of the United States of America. 102 [PubMed]
D'Albis T, Kempter R. (2017). A single-cell spiking model for the origin of grid-cell patterns. PLoS computational biology. 13 [PubMed]
Goldberg JA, Rokni U, Sompolinsky H. (2004). Patterns of ongoing activity and the functional architecture of the primary visual cortex. Neuron. 42 [PubMed]
Hamaguchi K, Hatchett JP, Okada M. (2006). Analytic solution of neural network with disordered lateral inhibition. Physical review. E, Statistical, nonlinear, and soft matter physics. 73 [PubMed]
Hamaguchi K, Okada M, Yamana M, Aihara K. (2005). Correlated firing in a feedforward network with Mexican-hat-type connectivity. Neural computation. 17 [PubMed]
Hansel D, van Vreeswijk C. (2002). How noise contributes to contrast invariance of orientation tuning in cat visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]
Hay E, Segev I. (2015). Dendritic Excitability and Gain Control in Recurrent Cortical Microcircuits. Cerebral cortex (New York, N.Y. : 1991). 25 [PubMed]
Kovacic G, Tao L, Cai D, Shelley MJ. (2008). Theoretical analysis of reverse-time correlation for idealized orientation tuning dynamics. Journal of computational neuroscience. 25 [PubMed]
Machens CK, Brody CD. (2008). Design of continuous attractor networks with monotonic tuning using a symmetry principle. Neural computation. 20 [PubMed]
Masuda N, Okada M, Aihara K. (2007). Filtering of spatial bias and noise inputs by spatially structured neural networks. Neural computation. 19 [PubMed]
Miller P. (2006). Analysis of spike statistics in neuronal systems with continuous attractors or multiple, discrete attractor States. Neural computation. 18 [PubMed]
Miyawaki Y, Okada M. (2004). A network model of perceptual suppression induced by transcranial magnetic stimulation. Neural computation. 16 [PubMed]
Morita K, Okada M, Aihara K. (2007). Selectivity and stability via dendritic nonlinearity. Neural computation. 19 [PubMed]
Muresan RC, Savin C. (2007). Resonance or integration? Self-sustained dynamics and excitability of neural microcircuits. Journal of neurophysiology. 97 [PubMed]
Nykamp DQ, Tranchina D. (2000). A population density approach that facilitates large-scale modeling of neural networks: analysis and an application to orientation tuning. Journal of computational neuroscience. 8 [PubMed]
Palmer SE, Miller KD. (2007). Effects of inhibitory gain and conductance fluctuations in a simple model for contrast-invariant orientation tuning in cat V1. Journal of neurophysiology. 98 [PubMed]
Pouget A, Dayan P, Zemel RS. (2003). Inference and computation with population codes. Annual review of neuroscience. 26 [PubMed]
Pugh MC, Ringach DL, Shapley R, Shelley MJ. (2000). Computational modeling of orientation tuning dynamics in monkey primary visual cortex. Journal of computational neuroscience. 8 [PubMed]
Rangan AV, Cai D, McLaughlin DW. (2005). Modeling the spatiotemporal cortical activity associated with the line-motion illusion in primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America. 102 [PubMed]
Rankin J, Chavane F. (2017). Neural field model to reconcile structure with function in primary visual cortex. PLoS computational biology. 13 [PubMed]
Renart A, Moreno-Bote R, Wang XJ, Parga N. (2007). Mean-driven and fluctuation-driven persistent activity in recurrent networks. Neural computation. 19 [PubMed]
Renart A, Song P, Wang XJ. (2003). Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron. 38 [PubMed]
Sadeh S, Clopath C, Rotter S. (2015). Processing of Feature Selectivity in Cortical Networks with Specific Connectivity. PloS one. 10 [PubMed]
Sadeh S, Rotter S. (2015). Orientation selectivity in inhibition-dominated networks of spiking neurons: effect of single neuron properties and network dynamics. PLoS computational biology. 11 [PubMed]
Shelley M, McLaughlin D. (2002). Coarse-grained reduction and analysis of a network model of cortical response: I. Drifting grating stimuli. Journal of computational neuroscience. 12 [PubMed]
Shen YS, Gao H, Yao H. (2005). Spike timing-dependent synaptic plasticity in visual cortex: a modeling study. Journal of computational neuroscience. 18 [PubMed]
Spreizer S, Aertsen A, Kumar A. (2019). From space to time: Spatial inhomogeneities lead to the emergence of spatiotemporal sequences in spiking neuronal networks. PLoS computational biology. 15 [PubMed]
Tang HJ, Tan KC, Zhang W. (2005). Analysis of cyclic dynamics for networks of linear threshold neurons. Neural computation. 17 [PubMed]
Ursino M, Cuppini C, Magosso E, Serino A, di Pellegrino G. (2009). Multisensory integration in the superior colliculus: a neural network model. Journal of computational neuroscience. 26 [PubMed]
Ursino M, La Cara GE. (2005). Dependence of visual cell properties on intracortical synapses among hypercolumns: analysis by a computer model. Journal of computational neuroscience. 19 [PubMed]
Wennekers T. (2004). Separation of spatio-temporal receptive fields into sums of gaussian components. Journal of computational neuroscience. 16 [PubMed]
Wimmer K et al. (2015). Sensory integration dynamics in a hierarchical network explains choice probabilities in cortical area MT. Nature communications. 6 [PubMed]
Wu S, Amari S. (2005). Computing with continuous attractors: stability and online aspects. Neural computation. 17 [PubMed]