Dickson CT et al. (2000). Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. Journal of neurophysiology. 83 [PubMed]

See more from authors: Dickson CT · Magistretti J · Shalinsky MH · Fransén E · Hasselmo ME · Alonso A

References and models cited by this paper
References and models that cite this paper

Acker CD, Kopell N, White JA. (2003). Synchronization of strongly coupled excitatory neurons: relating network behavior to biophysics. Journal of computational neuroscience. 15 [PubMed]

Anderson WD, Galván EJ, Mauna JC, Thiels E, Barrionuevo G. (2011). Properties and functional implications of I (h) in hippocampal area CA3 interneurons. Pflugers Archiv : European journal of physiology. 462 [PubMed]

Avella Gonzalez OJ, Mansvelder HD, van Pelt J, van Ooyen A. (2015). H-Channels Affect Frequency, Power and Amplitude Fluctuations of Neuronal Network Oscillations. Frontiers in computational neuroscience. 9 [PubMed]

D'Albis T, Kempter R. (2017). A single-cell spiking model for the origin of grid-cell patterns. PLoS computational biology. 13 [PubMed]

D'Angelo E et al. (2001). Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k+-dependent mechanism. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

Doiron B, Noonan L, Lemon N, Turner RW. (2003). Persistent Na+ current modifies burst discharge by regulating conditional backpropagation of dendritic spikes. Journal of neurophysiology. 89 [PubMed]

Dudman JT, Nolan MF. (2009). Stochastically gating ion channels enable patterned spike firing through activity-dependent modulation of spike probability. PLoS computational biology. 5 [PubMed]

Guo T et al. (2016). Electrical activity of ON and OFF retinal ganglion cells: a modelling study. Journal of neural engineering. 13 [PubMed]

Gütig R, Sompolinsky H. (2009). Time-warp-invariant neuronal processing. PLoS biology. 7 [PubMed]

Haas JS, Dorval AD, White JA. (2007). Contributions of Ih to feature selectivity in layer II stellate cells of the entorhinal cortex. Journal of computational neuroscience. 22 [PubMed]

Hummos A, Nair SS. (2017). An integrative model of the intrinsic hippocampal theta rhythm. PloS one. 12 [PubMed]

Kopell N, Borgers C, Pervouchine D, Tort AB, Malerba P. (2010). Gamma and theta rhythms in biophysical models of hippocampal circuits Hippocampal Microcircuits: A Computational Modeller`s Resource Book. Ch. 15..

Pervouchine DD et al. (2006). Low-dimensional maps encoding dynamics in entorhinal cortex and hippocampus. Neural computation. 18 [PubMed]

Pilly PK, Grossberg S. (2013). Spiking neurons in a hierarchical self-organizing map model can learn to develop spatial and temporal properties of entorhinal grid cells and hippocampal place cells PloS one. 8 [PubMed]

Rotstein HG, Oppermann T, White JA, Kopell N. (2006). The dynamic structure underlying subthreshold oscillatory activity and the onset of spikes in a model of medial entorhinal cortex stellate cells. Journal of computational neuroscience. 21 [PubMed]

Rotstein HG et al. (2005). Slow and fast inhibition and an H-current interact to create a theta rhythm in a model of CA1 interneuron network. Journal of neurophysiology. 94 [PubMed]

Rubin DB, Cleland TA. (2006). Dynamical mechanisms of odor processing in olfactory bulb mitral cells. Journal of neurophysiology. 96 [PubMed]

Schmidt-Hieber C et al. (2017). Active dendritic integration as a mechanism for robust and precise grid cell firing. Nature neuroscience. 20 [PubMed]

Solinas S et al. (2007). Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells. Frontiers in cellular neuroscience. 1 [PubMed]

Vich C, Guillamon A. (2015). Dissecting estimation of conductances in subthreshold regimes. Journal of computational neuroscience. 39 [PubMed]

Wetmore DZ, Mukamel EA, Schnitzer MJ. (2008). Lock-and-key mechanisms of cerebellar memory recall based on rebound currents. Journal of neurophysiology. 100 [PubMed]

Zilli EA. (2010). Coupled Noisy Spiking Neurons as Velocity-Controlled Oscillators in a Model of Grid Cell Spatial Firing J. Neurosci.. 30(41)

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.