Appleby PA, Elliott T. (2005). Synaptic and temporal ensemble interpretation of spike-timing-dependent plasticity. Neural computation. 17 [PubMed]
Appleby PA, Elliott T. (2006). Stable competitive dynamics emerge from multispike interactions in a stochastic model of spike-timing-dependent plasticity. Neural computation. 18 [PubMed]
Appleby PA, Elliott T. (2007). Multispike interactions in a stochastic model of spike-timing-dependent plasticity. Neural computation. 19 [PubMed]
Ashhad S, Narayanan R. (2013). Quantitative interactions between the A-type K+ current and inositol trisphosphate receptors regulate intraneuronal Ca2+ waves and synaptic plasticity. The Journal of physiology. 591 [PubMed]
Badoual M et al. (2006). Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity. International journal of neural systems. 16 [PubMed]
Bell M, Bartol T, Sejnowski T, Rangamani P. (2019). Dendritic spine geometry and spine apparatus organization govern the spatiotemporal dynamics of calcium. The Journal of general physiology. 151 [PubMed]
Benuskova L, Abraham WC. (2007). STDP rule endowed with the BCM sliding threshold accounts for hippocampal heterosynaptic plasticity. Journal of computational neuroscience. 22 [PubMed]
Bono J, Clopath C. (2017). Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level. Nature communications. 8 [PubMed]
Brader JM, Senn W, Fusi S. (2007). Learning real-world stimuli in a neural network with spike-driven synaptic dynamics. Neural computation. 19 [PubMed]
Cai Y, Gavornik JP, Cooper LN, Yeung LC, Shouval HZ. (2007). Effect of stochastic synaptic and dendritic dynamics on synaptic plasticity in visual cortex and hippocampus. Journal of neurophysiology. 97 [PubMed]
Clopath C, Büsing L, Vasilaki E, Gerstner W. (2010). Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nature neuroscience. 13 [PubMed]
Clopath C, Pedrosa V. (2017). The role of neuromodulators in cortical plasticity. A computational perspective. Front. Synaptic Neurosci.. 8
Cui Y et al. (2016). Endocannabinoid dynamics gate spike-timing dependent depression and potentiation. eLife. 5 [PubMed]
Doron M, Chindemi G, Muller E, Markram H, Segev I. (2017). Timed Synaptic Inhibition Shapes NMDA Spikes, Influencing Local Dendritic Processing and Global I/O Properties of Cortical Neurons. Cell reports. 21 [PubMed]
Ebner C, Clopath C, Jedlicka P, Cuntz H. (2019). Unifying Long-Term Plasticity Rules for Excitatory Synapses by Modeling Dendrites of Cortical Pyramidal Neurons. Cell reports. 29 [PubMed]
Gerkin RC, Lau PM, Nauen DW, Wang YT, Bi GQ. (2007). Modular competition driven by NMDA receptor subtypes in spike-timing-dependent plasticity. Journal of neurophysiology. 97 [PubMed]
Gerstner W, Kistler WM. (2002). Mathematical formulations of Hebbian learning. Biological cybernetics. 87 [PubMed]
Graupner M, Brunel N. (2007). STDP in a bistable synapse model based on CaMKII and associated signaling pathways. PLoS computational biology. 3 [PubMed]
Graupner M, Brunel N. (2012). Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location. Proceedings of the National Academy of Sciences of the United States of America. 109 [PubMed]
Hiratani N, Fukai T. (2017). Detailed Dendritic Excitatory/Inhibitory Balance through Heterosynaptic Spike-Timing-Dependent Plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 37 [PubMed]
Hummos A, Franklin CC, Nair SS. (2014). Intrinsic mechanisms stabilize encoding and retrieval circuits differentially in a hippocampal network model. Hippocampus. 24 [PubMed]
Jędrzejewska-Szmek J, Damodaran S, Dorman DB, Blackwell KT. (2017). Calcium dynamics predict direction of synaptic plasticity in striatal spiny projection neurons. The European journal of neuroscience. 45 [PubMed]
Kastellakis G, Silva AJ, Poirazi P. (2016). Linking Memories across Time via Neuronal and Dendritic Overlaps in Model Neurons with Active Dendrites. Cell reports. 17 [PubMed]
Kim M, Huang T, Abel T, Blackwell KT. (2010). Temporal sensitivity of protein kinase a activation in late-phase long term potentiation. PLoS computational biology. 6 [PubMed]
Letzkus JJ, Kampa BM, Stuart GJ. (2006). Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Manninen T, Hituri K, Kotaleski JH, Blackwell KT, Linne ML. (2010). Postsynaptic signal transduction models for long-term potentiation and depression. Frontiers in computational neuroscience. 4 [PubMed]
Masoli S, Ottaviani A, Casali S, D'Angelo E. (2020). Cerebellar Golgi cell models predict dendritic processing and mechanisms of synaptic plasticity. PLoS computational biology. 16 [PubMed]
Masuda N, Kori H. (2007). Formation of feedforward networks and frequency synchrony by spike-timing-dependent plasticity. Journal of computational neuroscience. 22 [PubMed]
O'Donnell C, Nolan MF, van Rossum MC. (2011). Dendritic spine dynamics regulate the long-term stability of synaptic plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]
Sadeh S, Clopath C, Rotter S. (2015). Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity. PLoS computational biology. 11 [PubMed]
Saudargiene A, Porr B, Wörgötter F. (2004). How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model. Neural computation. 16 [PubMed]
Solinas SMG, Edelmann E, Leßmann V, Migliore M. (2019). A kinetic model for Brain-Derived Neurotrophic Factor mediated spike timing-dependent LTP. PLoS computational biology. 15 [PubMed]
Tamosiunaite M, Porr B, Wörgötter F. (2007). Self-influencing synaptic plasticity: recurrent changes of synaptic weights can lead to specific functional properties. Journal of computational neuroscience. 23 [PubMed]
Tzilivaki A, Kastellakis G, Poirazi P. (2019). Challenging the point neuron dogma: FS basket cells as 2-stage nonlinear integrators Nature communications. 10 [PubMed]
Urakubo H, Aihara T, Kuroda S, Watanabe M, Kondo S. (2004). Spatial localization of synapses required for supralinear summation of action potentials and EPSPs. Journal of computational neuroscience. 16 [PubMed]
Urakubo H, Honda M, Froemke RC, Kuroda S. (2008). Requirement of an allosteric kinetics of NMDA receptors for spike timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]
Wilmes KA, Sprekeler H, Schreiber S. (2016). Inhibition as a Binary Switch for Excitatory Plasticity in Pyramidal Neurons. PLoS computational biology. 12 [PubMed]
Wörgötter F, Porr B. (2005). Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural computation. 17 [PubMed]
Yu X, Shouval HZ, Knierim JJ. (2008). A biophysical model of synaptic plasticity and metaplasticity can account for the dynamics of the backward shift of hippocampal place fields. Journal of neurophysiology. 100 [PubMed]
Zhou YD, Acker CD, Netoff TI, Sen K, White JA. (2005). Increasing Ca2+ transients by broadening postsynaptic action potentials enhances timing-dependent synaptic depression. Proceedings of the National Academy of Sciences of the United States of America. 102 [PubMed]