Bono J, Clopath C. (2017). Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level. Nature communications. 8 [PubMed]

See more from authors: Bono J · Clopath C

References and models cited by this paper

Acker CD, Antic SD. (2009). Quantitative assessment of the distributions of membrane conductances involved in action potential backpropagation along basal dendrites. Journal of neurophysiology. 101 [PubMed]

Antic SD, Zhou WL, Moore AR, Short SM, Ikonomu KD. (2010). The decade of the dendritic NMDA spike. Journal of neuroscience research. 88 [PubMed]

Artola A, Bröcher S, Singer W. (1990). Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature. 347 [PubMed]

Behabadi BF, Polsky A, Jadi M, Schiller J, Mel BW. (2012). Location-dependent excitatory synaptic interactions in pyramidal neuron dendrites. PLoS computational biology. 8 [PubMed]

Benavides-Piccione R, Fernaud-Espinosa I, Robles V, Yuste R, DeFelipe J. (2013). Age-based comparison of human dendritic spine structure using complete three-dimensional reconstructions. Cerebral cortex (New York, N.Y. : 1991). 23 [PubMed]

Berlucchi G, Buchtel HA. (2009). Neuronal plasticity: historical roots and evolution of meaning. Experimental brain research. 192 [PubMed]

Bi GQ, Poo MM. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Bienenstock EL, Cooper LN, Munro PW. (1982). Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2 [PubMed]

Bliss TV, Lomo T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. The Journal of physiology. 232 [PubMed]

Bloss EB et al. (2016). Structured Dendritic Inhibition Supports Branch-Selective Integration in CA1 Pyramidal Cells. Neuron. 89 [PubMed]

Branco T, Clark BA, Häusser M. (2010). Dendritic discrimination of temporal input sequences in cortical neurons. Science (New York, N.Y.). 329 [PubMed]

Branco T, Häusser M. (2011). Synaptic integration gradients in single cortical pyramidal cell dendrites. Neuron. 69 [PubMed]

Brandalise F, Gerber U. (2014). Mossy fiber-evoked subthreshold responses induce timing-dependent plasticity at hippocampal CA3 recurrent synapses. Proceedings of the National Academy of Sciences of the United States of America. 111 [PubMed]

Brea J, Gaál AT, Urbanczik R, Senn W. (2016). Prospective Coding by Spiking Neurons. PLoS computational biology. 12 [PubMed]

Buchanan KA, Mellor JR. (2010). The activity requirements for spike timing-dependent plasticity in the hippocampus. Frontiers in synaptic neuroscience. 2 [PubMed]

Caporale N, Dan Y. (2008). Spike timing-dependent plasticity: a Hebbian learning rule. Annual review of neuroscience. 31 [PubMed]

Caroni P, Donato F, Muller D. (2012). Structural plasticity upon learning: regulation and functions. Nature reviews. Neuroscience. 13 [PubMed]

Chen X, Leischner U, Rochefort NL, Nelken I, Konnerth A. (2011). Functional mapping of single spines in cortical neurons in vivo. Nature. 475 [PubMed]

Chistiakova M, Bannon NM, Bazhenov M, Volgushev M. (2014). Heterosynaptic plasticity: multiple mechanisms and multiple roles. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry. 20 [PubMed]

Chistiakova M, Bannon NM, Chen JY, Bazhenov M, Volgushev M. (2015). Homeostatic role of heterosynaptic plasticity: models and experiments. Frontiers in computational neuroscience. 9 [PubMed]

Cichon J, Gan WB. (2015). Branch-specific dendritic Ca(2+) spikes cause persistent synaptic plasticity. Nature. 520 [PubMed]

Clopath C, Büsing L, Vasilaki E, Gerstner W. (2010). Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nature neuroscience. 13 [PubMed]

Druckmann S et al. (2014). Structured synaptic connectivity between hippocampal regions. Neuron. 81 [PubMed]

Dudek SM, Bear MF. (1992). Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proceedings of the National Academy of Sciences of the United States of America. 89 [PubMed]

Dudman JT, Tsay D, Siegelbaum SA. (2007). A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity. Neuron. 56 [PubMed]

Feldman DE. (2012). The spike-timing dependence of plasticity. Neuron. 75 [PubMed]

Frey U, Morris RG. (1997). Synaptic tagging and long-term potentiation. Nature. 385 [PubMed]

Froemke RC, Dan Y. (2002). Spike-timing-dependent synaptic modification induced by natural spike trains. Nature. 416 [PubMed]

Froemke RC, Letzkus JJ, Kampa BM, Hang GB, Stuart GJ. (2010). Dendritic synapse location and neocortical spike-timing-dependent plasticity. Frontiers in synaptic neuroscience. 2 [PubMed]

Froemke RC, Tsay IA, Raad M, Long JD, Dan Y. (2006). Contribution of individual spikes in burst-induced long-term synaptic modification. Journal of neurophysiology. 95 [PubMed]

Frégnac Y et al. (2010). A Re-Examination of Hebbian-Covariance Rules and Spike Timing-Dependent Plasticity in Cat Visual Cortex in vivo. Frontiers in synaptic neuroscience. 2 [PubMed]

Fu M, Yu X, Lu J, Zuo Y. (2012). Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature. 483 [PubMed]

Fusi S, Drew PJ, Abbott LF. (2005). Cascade models of synaptically stored memories. Neuron. 45 [PubMed]

Gambino F et al. (2014). Sensory-evoked LTP driven by dendritic plateau potentials in vivo. Nature. 515 [PubMed]

Gerstner W, Kempter R, van Hemmen JL, Wagner H. (1996). A neuronal learning rule for sub-millisecond temporal coding. Nature. 383 [PubMed]

Gidon A, Segev I. (2012). Principles governing the operation of synaptic inhibition in dendrites. Neuron. 75 [PubMed]

Golding NL, Staff NP, Spruston N. (2002). Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature. 418 [PubMed]

Goodman D, Brette R. (2008). Brian: a simulator for spiking neural networks in python. Frontiers in neuroinformatics. 2 [PubMed]

Gordon U, Polsky A, Schiller J. (2006). Plasticity compartments in basal dendrites of neocortical pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Graupner M, Brunel N. (2012). Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location. Proceedings of the National Academy of Sciences of the United States of America. 109 [PubMed]

Gutkin BS, Humphries M, Cazé RD. (2012). Spiking and saturating dendrites differentially expand single neuron computation capacity Advances in neural information processing systems. 25

Hardie J, Spruston N. (2009). Synaptic depolarization is more effective than back-propagating action potentials during induction of associative long-term potentiation in hippocampal pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Harvey CD, Svoboda K. (2007). Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature. 450 [PubMed]

Hawkins J, Ahmad S. (2016). Why Neurons Have Thousands of Synapses, a Theory of Sequence Memory in Neocortex. Frontiers in neural circuits. 10 [PubMed]

Hebb DO. (1949). The Organization Of Behavior.

Hill DN, Varga Z, Jia H, Sakmann B, Konnerth A. (2013). Multibranch activity in basal and tuft dendrites during firing of layer 5 cortical neurons in vivo. Proceedings of the National Academy of Sciences of the United States of America. 110 [PubMed]

Jadi M, Polsky A, Schiller J, Mel BW. (2012). Location-dependent effects of inhibition on local spiking in pyramidal neuron dendrites. PLoS computational biology. 8 [PubMed]

Jahr CE, Stevens CF. (1990). Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. The Journal of neuroscience : the official journal of the Society for Neuroscience. 10 [PubMed]

Jia H, Rochefort NL, Chen X, Konnerth A. (2010). Dendritic organization of sensory input to cortical neurons in vivo. Nature. 464 [PubMed]

Kampa BM, Letzkus JJ, Stuart GJ. (2006). Requirement of dendritic calcium spikes for induction of spike-timing-dependent synaptic plasticity. The Journal of physiology. 574 [PubMed]

Kastellakis G, Silva AJ, Poirazi P. (2016). Linking Memories across Time via Neuronal and Dendritic Overlaps in Model Neurons with Active Dendrites. Cell reports. 17 [PubMed]

Katz Y et al. (2009). Synapse distribution suggests a two-stage model of dendritic integration in CA1 pyramidal neurons. Neuron. 63 [PubMed]

Kim Y, Hsu CL, Cembrowski MS, Mensh BD, Spruston N. (2015). Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons. eLife. 4 [PubMed]

Kumar A, Mehta MR. (2011). Frequency-Dependent Changes in NMDAR-Dependent Synaptic Plasticity. Frontiers in computational neuroscience. 5 [PubMed]

Larkum ME, Waters J, Sakmann B, Helmchen F. (2007). Dendritic spikes in apical dendrites of neocortical layer 2/3 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Lee KF, Soares C, Thivierge JP, Béïque JC. (2016). Correlated Synaptic Inputs Drive Dendritic Calcium Amplification and Cooperative Plasticity during Clustered Synapse Development. Neuron. 89 [PubMed]

Legenstein R, Maass W. (2011). Branch-specific plasticity enables self-organization of nonlinear computation in single neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]

Letzkus JJ, Kampa BM, Stuart GJ. (2006). Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Lisman J, Spruston N. (2005). Postsynaptic depolarization requirements for LTP and LTD: a critique of spike timing-dependent plasticity. Nature neuroscience. 8 [PubMed]

Lisman J, Spruston N. (2010). Questions about STDP as a General Model of Synaptic Plasticity. Frontiers in synaptic neuroscience. 2 [PubMed]

Losonczy A, Makara JK, Magee JC. (2008). Compartmentalized dendritic plasticity and input feature storage in neurons. Nature. 452 [PubMed]

Major G, Larkum ME, Schiller J. (2013). Active properties of neocortical pyramidal neuron dendrites. Annual review of neuroscience. 36 [PubMed]

Major G, Polsky A, Denk W, Schiller J, Tank DW. (2008). Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. Journal of neurophysiology. 99 [PubMed]

Makara JK, Losonczy A, Wen Q, Magee JC. (2009). Experience-dependent compartmentalized dendritic plasticity in rat hippocampal CA1 pyramidal neurons. Nature neuroscience. 12 [PubMed]

Markram H, Lübke J, Frotscher M, Roth A, Sakmann B. (1997). Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. The Journal of physiology. 500 ( Pt 2) [PubMed]

Markram H, Lübke J, Frotscher M, Sakmann B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science (New York, N.Y.). 275 [PubMed]

Markram H et al. (2004). Interneurons of the neocortical inhibitory system. Nature reviews. Neuroscience. 5 [PubMed]

Mehta MR. (2004). Cooperative LTP can map memory sequences on dendritic branches. Trends in neurosciences. 27 [PubMed]

Mel BW. (1991). The clusteron: toward a simple abstraction for a complex neuron NIPS. 4

Morrison A, Diesmann M, Gerstner W. (2008). Phenomenological models of synaptic plasticity based on spike timing. Biological cybernetics. 98 [PubMed]

Nevian T, Larkum ME, Polsky A, Schiller J. (2007). Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nature neuroscience. 10 [PubMed]

Nevian T, Sakmann B. (2006). Spine Ca2+ signaling in spike-timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Ngezahayo A, Schachner M, Artola A. (2000). Synaptic activity modulates the induction of bidirectional synaptic changes in adult mouse hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Nicholson DA et al. (2006). Distance-dependent differences in synapse number and AMPA receptor expression in hippocampal CA1 pyramidal neurons. Neuron. 50 [PubMed]

Palmer LM et al. (2014). NMDA spikes enhance action potential generation during sensory input. Nature neuroscience. 17 [PubMed]

Pfister JP, Gerstner W. (2006). Triplets of spikes in a model of spike timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Poirazi P, Mel BW. (2001). Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron. 29 [PubMed]

Roxin A, Fusi S. (2013). Efficient partitioning of memory systems and its importance for memory consolidation. PLoS computational biology. 9 [PubMed]

Sandler M, Shulman Y, Schiller J. (2016). A Novel Form of Local Plasticity in Tuft Dendrites of Neocortical Somatosensory Layer 5 Pyramidal Neurons. Neuron. 90 [PubMed]

Schiller J, Major G, Koester HJ, Schiller Y. (2000). NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature. 404 [PubMed]

Schiller J, Schiller Y, Stuart G, Sakmann B. (1997). Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. The Journal of physiology. 505 ( Pt 3) [PubMed]

Schulz JM. (2010). Synaptic Plasticity in vivo: More than Just Spike-Timing? Frontiers in synaptic neuroscience. 2 [PubMed]

Shouval HZ, Bear MF, Cooper LN. (2002). A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America. 99 [PubMed]

Shouval HZ, Wang SS, Wittenberg GM. (2010). Spike timing dependent plasticity: a consequence of more fundamental learning rules. Frontiers in computational neuroscience. 4 [PubMed]

Sjöström PJ, Häusser M. (2006). A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron. 51 [PubMed]

Sjöström PJ, Turrigiano GG, Nelson SB. (2001). Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron. 32 [PubMed]

Stent GS. (1973). A physiological mechanism for Hebb's postulate of learning. Proceedings of the National Academy of Sciences of the United States of America. 70 [PubMed]

Takahashi H, Magee JC. (2009). Pathway interactions and synaptic plasticity in the dendritic tuft regions of CA1 pyramidal neurons. Neuron. 62 [PubMed]

Thalmeier D, Uhlmann M, Kappen HJ, Memmesheimer RM. (2016). Learning Universal Computations with Spikes. PLoS computational biology. 12 [PubMed]

Triesch J. (2007). Synergies between intrinsic and synaptic plasticity mechanisms. Neural computation. 19 [PubMed]

Turrigiano G. (2011). Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annual review of neuroscience. 34 [PubMed]

Turrigiano G. (2012). Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harbor perspectives in biology. 4 [PubMed]

Turrigiano GG, Nelson SB. (2004). Homeostatic plasticity in the developing nervous system. Nature reviews. Neuroscience. 5 [PubMed]

Urbanczik R, Senn W. (2014). Learning by the dendritic prediction of somatic spiking. Neuron. 81 [PubMed]

Wang HX, Gerkin RC, Nauen DW, Bi GQ. (2005). Coactivation and timing-dependent integration of synaptic potentiation and depression. Nature neuroscience. 8 [PubMed]

Waters J, Larkum M, Sakmann B, Helmchen F. (2003). Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Watt AJ, van Rossum MC, MacLeod KM, Nelson SB, Turrigiano GG. (2000). Activity coregulates quantal AMPA and NMDA currents at neocortical synapses. Neuron. 26 [PubMed]

Weber JP et al. (2016). Location-dependent synaptic plasticity rules by dendritic spine cooperativity. Nature communications. 7 [PubMed]

Wilmes KA, Sprekeler H, Schreiber S. (2016). Inhibition as a Binary Switch for Excitatory Plasticity in Pyramidal Neurons. PLoS computational biology. 12 [PubMed]

Yger P, Gilson M. (2015). Models of metaplasticity: a review of concepts Front. Comput. Neurosci.. 9

References and models that cite this paper

Ebner C, Clopath C, Jedlicka P, Cuntz H. (2019). Unifying Long-Term Plasticity Rules for Excitatory Synapses by Modeling Dendrites of Cortical Pyramidal Neurons. Cell reports. 29 [PubMed]

Gao PP et al. (2021). Local Glutamate-Mediated Dendritic Plateau Potentials Change the State of the Cortical Pyramidal Neuron. Journal of neurophysiology. 125 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.