Appleby PA, Elliott T. (2005). Synaptic and temporal ensemble interpretation of spike-timing-dependent plasticity. Neural computation. 17 [PubMed]
Appleby PA, Elliott T. (2006). Stable competitive dynamics emerge from multispike interactions in a stochastic model of spike-timing-dependent plasticity. Neural computation. 18 [PubMed]
Appleby PA, Elliott T. (2007). Multispike interactions in a stochastic model of spike-timing-dependent plasticity. Neural computation. 19 [PubMed]
Badoual M et al. (2006). Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity. International journal of neural systems. 16 [PubMed]
Banerjee A. (2006). On the sensitive dependence on initial conditions of the dynamics of networks of spiking neurons. Journal of computational neuroscience. 20 [PubMed]
Bohte SM, Mozer MC. (2007). Reducing the variability of neural responses: a computational theory of spike-timing-dependent plasticity. Neural computation. 19 [PubMed]
Bono J, Clopath C. (2017). Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level. Nature communications. 8 [PubMed]
Brader JM, Senn W, Fusi S. (2007). Learning real-world stimuli in a neural network with spike-driven synaptic dynamics. Neural computation. 19 [PubMed]
Burkitt AN, Meffin H, Grayden DB. (2004). Spike-timing-dependent plasticity: the relationship to rate-based learning for models with weight dynamics determined by a stable fixed point. Neural computation. 16 [PubMed]
Delgado JY, Gómez-González JF, Desai NS. (2010). Pyramidal neuron conductance state gates spike-timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]
Deneve S. (2008). Bayesian spiking neurons II: learning. Neural computation. 20 [PubMed]
Florian RV. (2007). Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity. Neural computation. 19 [PubMed]
Gerkin RC, Lau PM, Nauen DW, Wang YT, Bi GQ. (2007). Modular competition driven by NMDA receptor subtypes in spike-timing-dependent plasticity. Journal of neurophysiology. 97 [PubMed]
Graupner M, Brunel N. (2007). STDP in a bistable synapse model based on CaMKII and associated signaling pathways. PLoS computational biology. 3 [PubMed]
Graupner M, Brunel N. (2012). Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location. Proceedings of the National Academy of Sciences of the United States of America. 109 [PubMed]
Guyonneau R, VanRullen R, Thorpe SJ. (2005). Neurons tune to the earliest spikes through STDP. Neural computation. 17 [PubMed]
Gütig R, Sompolinsky H. (2009). Time-warp-invariant neuronal processing. PLoS biology. 7 [PubMed]
Hosaka R, Araki O, Ikeguchi T. (2008). STDP provides the substrate for igniting synfire chains by spatiotemporal input patterns. Neural computation. 20 [PubMed]
Iannella N, Tanaka S. (2006). Synaptic efficacy cluster formation across the dendrite via STDP. Neuroscience letters. 403 [PubMed]
Kobayashi T, Shimada Y, Fujiwara K, Ikeguchi T. (2017). Reproducing Infra-Slow Oscillations with Dopaminergic Modulation. Scientific reports. 7 [PubMed]
Masuda N, Kori H. (2007). Formation of feedforward networks and frequency synchrony by spike-timing-dependent plasticity. Journal of computational neuroscience. 22 [PubMed]
Morrison A, Aertsen A, Diesmann M. (2007). Spike-timing-dependent plasticity in balanced random networks. Neural computation. 19 [PubMed]
Muller L, Brette R, Gutkin B. (2011). Spike-timing dependent plasticity and feed-forward input oscillations produce precise and invariant spike phase-locking. Frontiers in computational neuroscience. 5 [PubMed]
Rudolph M, Destexhe A. (2006). Analytical integrate-and-fire neuron models with conductance-based dynamics for event-driven simulation strategies. Neural computation. 18 [PubMed]
Rudolph M, Destexhe A. (2006). Event-based simulation strategy for conductance-based synaptic interactions and plasticity Neurocomputing. 69
Rumsey CC, Abbott LF. (2004). Equalization of synaptic efficacy by activity- and timing-dependent synaptic plasticity. Journal of neurophysiology. 91 [PubMed]
Sadeh S, Clopath C, Rotter S. (2015). Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity. PLoS computational biology. 11 [PubMed]
Saudargiene A, Porr B, Wörgötter F. (2004). How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model. Neural computation. 16 [PubMed]
Shen YS, Gao H, Yao H. (2005). Spike timing-dependent synaptic plasticity in visual cortex: a modeling study. Journal of computational neuroscience. 18 [PubMed]
Sterratt DC, Graham B, Gillies A, Willshaw D. (2011). Principles of Computational Modelling in Neuroscience, Cambridge University Press.
Talathi SS, Abarbanel HD, Ditto WL. (2008). Temporal spike pattern learning. Physical review. E, Statistical, nonlinear, and soft matter physics. 78 [PubMed]
Talathi SS, Hwang DU, Ditto WL. (2008). Spike timing dependent plasticity promotes synchrony of inhibitory networks in the presence of heterogeneity. Journal of computational neuroscience. 25 [PubMed]
Tamosiunaite M, Porr B, Wörgötter F. (2007). Self-influencing synaptic plasticity: recurrent changes of synaptic weights can lead to specific functional properties. Journal of computational neuroscience. 23 [PubMed]
Urakubo H, Honda M, Froemke RC, Kuroda S. (2008). Requirement of an allosteric kinetics of NMDA receptors for spike timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]
Veredas FJ, Vico FJ, Alonso JM. (2005). Factors determining the precision of the correlated firing generated by a monosynaptic connection in the cat visual pathway. The Journal of physiology. 567 [PubMed]
Wennekers T, Ay N. (2005). Finite state automata resulting from temporal information maximization and a temporal learning rule. Neural computation. 17 [PubMed]
Wörgötter F, Porr B. (2005). Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural computation. 17 [PubMed]