Sharott A et al. (2005). Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat. The European journal of neuroscience. 21 [PubMed]

See more from authors: Sharott A · Magill PJ · Harnack D · Kupsch A · Meissner W · Brown P

References and models cited by this paper
References and models that cite this paper

Corbit VL et al. (2016). Pallidostriatal Projections Promote ß Oscillations in a Dopamine-Depleted Biophysical Network Model. The Journal of neuroscience : the official journal of the Society for Neuroscience. 36 [PubMed]

Edgerton JR, Hanson JE, Günay C, Jaeger D. (2010). Dendritic sodium channels regulate network integration in globus pallidus neurons: a modeling study. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

Edgerton JR, Jaeger D. (2011). Dendritic sodium channels promote active decorrelation and reduce phase locking to parkinsonian input oscillations in model globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]

Hahn PJ, McIntyre CC. (2010). Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation. Journal of computational neuroscience. 28 [PubMed]

Kitano K. (2023). The network configuration in Parkinsonian state compensates network activity change caused by loss of dopamine Physiological reports. 11 [PubMed]

Pavlides A, Hogan SJ, Bogacz R. (2015). Computational Models Describing Possible Mechanisms for Generation of Excessive Beta Oscillations in Parkinson's Disease. PLoS computational biology. 11 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.