Bar-Gad I, Heimer G, Ritov Y, Bergman H. (2003). Functional correlations between neighboring neurons in the primate globus pallidus are weak or nonexistent. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]
Berens P. (2009). CircStat: a MATLAB toolbox for circular statistics J Stat Software. 31
Bergman H, Wichmann T, Karmon B, DeLong MR. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. Journal of neurophysiology. 72 [PubMed]
Best J, Park C, Terman D, Wilson C. (2007). Transitions between irregular and rhythmic firing patterns in excitatory-inhibitory neuronal networks. Journal of computational neuroscience. 23 [PubMed]
Bevan MD, Magill PJ, Terman D, Bolam JP, Wilson CJ. (2002). Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends in neurosciences. 25 [PubMed]
Bokil H, Andrews P, Kulkarni JE, Mehta S, Mitra PP. (2010). Chronux: a platform for analyzing neural signals. Journal of neuroscience methods. 192 [PubMed]
Bokil H, Tchernichovsky O, Mitra PP. (2006). Dynamic phenotypes: time series analysis techniques for characterizing neuronal and behavioral dynamics. Neuroinformatics. 4 [PubMed]
Buzsáki G, Draguhn A. (2004). Neuronal oscillations in cortical networks. Science (New York, N.Y.). 304 [PubMed]
Cantrell AR, Catterall WA. (2001). Neuromodulation of Na+ channels: an unexpected form of cellular plasticity. Nature reviews. Neuroscience. 2 [PubMed]
Cantrell AR, Smith RD, Goldin AL, Scheuer T, Catterall WA. (1997). Dopaminergic modulation of sodium current in hippocampal neurons via cAMP-dependent phosphorylation of specific sites in the sodium channel alpha subunit. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]
Chan CS et al. (2011). HCN channelopathy in external globus pallidus neurons in models of Parkinson's disease. Nature neuroscience. 14 [PubMed]
Chan CS, Shigemoto R, Mercer JN, Surmeier DJ. (2004). HCN2 and HCN1 channels govern the regularity of autonomous pacemaking and synaptic resetting in globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]
Chen L, Cui QL, Yung WH. (2009). Neurokinin-1 receptor activation in globus pallidus. Frontiers in neuroscience. 3 [PubMed]
Chen L, Yung KK, Yung WH. (2006). Neurotensin selectively facilitates glutamatergic transmission in globus pallidus. Neuroscience. 141 [PubMed]
DeLong MR. (1971). Activity of pallidal neurons during movement. Journal of neurophysiology. 34 [PubMed]
Deister CA, Chan CS, Surmeier DJ, Wilson CJ. (2009). Calcium-activated SK channels influence voltage-gated ion channels to determine the precision of firing in globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]
Dobrunz LE, Stevens CF. (1997). Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron. 18 [PubMed]
Edgerton JR, Hanson JE, Günay C, Jaeger D. (2010). Dendritic sodium channels regulate network integration in globus pallidus neurons: a modeling study. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]
Efron B. (1987). Better bootstrap confidence intervals J Am Stat Assoc. 82
Elias S et al. (2007). Statistical properties of pauses of the high-frequency discharge neurons in the external segment of the globus pallidus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]
Falls WM, Park MR, Kitai ST. (1983). An intracellular HRP study of the rat globus pallidus. II. Fine structural characteristics and synaptic connections of medially located large GP neurons. The Journal of comparative neurology. 221 [PubMed]
Filion M, Tremblay L, Bédard PJ. (1988). Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain research. 444 [PubMed]
Fries P. (2009). Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annual review of neuroscience. 32 [PubMed]
Goldberg JA et al. (2002). Enhanced synchrony among primary motor cortex neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson's disease. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]
Günay C, Edgerton JR, Jaeger D. (2008). Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]
Hanson JE, Jaeger D. (2002). Short-term plasticity shapes the response to simulated normal and parkinsonian input patterns in the globus pallidus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]
Hanson JE, Smith Y, Jaeger D. (2004). Sodium channels and dendritic spike initiation at excitatory synapses in globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]
Hashimoto K, Kita H. (2008). Serotonin activates presynaptic and postsynaptic receptors in rat globus pallidus. Journal of neurophysiology. 99 [PubMed]
Heimer G, Bar-Gad I, Goldberg JA, Bergman H. (2002). Dopamine replacement therapy reverses abnormal synchronization of pallidal neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of parkinsonism. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]
Helmich RC et al. (2010). Spatial remapping of cortico-striatal connectivity in Parkinson's disease. Cerebral cortex (New York, N.Y. : 1991). 20 [PubMed]
Herzog RI, Liu C, Waxman SG, Cummins TR. (2003). Calmodulin binds to the C terminus of sodium channels Nav1.4 and Nav1.6 and differentially modulates their functional properties. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]
Hessler NA, Shirke AM, Malinow R. (1993). The probability of transmitter release at a mammalian central synapse. Nature. 366 [PubMed]
Holgado AJ, Terry JR, Bogacz R. (2010). Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]
Hu XT, Dong Y, Zhang XF, White FJ. (2005). Dopamine D2 receptor-activated Ca2+ signaling modulates voltage-sensitive sodium currents in rat nucleus accumbens neurons. Journal of neurophysiology. 93 [PubMed]
Israel Z, Bergman H. (2008). Pathophysiology of the basal ganglia and movement disorders: from animal models to human clinical applications. Neuroscience and biobehavioral reviews. 32 [PubMed]
Kita H, Kitai ST. (1994). The morphology of globus pallidus projection neurons in the rat: an intracellular staining study. Brain research. 636 [PubMed]
Kühn AA et al. (2008). High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson's disease in parallel with improvement in motor performance. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]
Kühn AA et al. (2005). The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson's disease. Experimental neurology. 194 [PubMed]
Levy R et al. (2002). Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson's disease. Brain : a journal of neurology. 125 [PubMed]
Mallet N et al. (2008). Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]
Mallet N et al. (2008). Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]
Nakanishi H, Hori N, Kastuda N. (1985). Neostriatal evoked inhibition and effects of dopamine on globus pallidal neurons in rat slice preparations. Brain research. 358 [PubMed]
Nini A, Feingold A, Slovin H, Bergman H. (1995). Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. Journal of neurophysiology. 74 [PubMed]
Percheron G, Filion M. (1991). Parallel processing in the basal ganglia: up to a point. Trends in neurosciences. 14 [PubMed]
Percheron G, Yelnik J, François C. (1984). A Golgi analysis of the primate globus pallidus. III. Spatial organization of the striato-pallidal complex. The Journal of comparative neurology. 227 [PubMed]
Poisik OV, Smith Y, Conn PJ. (2007). D1- and D2-like dopamine receptors regulate signaling properties of group I metabotropic glutamate receptors in the rat globus pallidus. The European journal of neuroscience. 26 [PubMed]
Raz A, Vaadia E, Bergman H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]
Rosenmund C, Clements JD, Westbrook GL. (1993). Nonuniform probability of glutamate release at a hippocampal synapse. Science (New York, N.Y.). 262 [PubMed]
Ruskin DN et al. (1999). Multisecond oscillations in firing rate in the basal ganglia: robust modulation by dopamine receptor activation and anesthesia. Journal of neurophysiology. 81 [PubMed]
Ruskin DN, Marshall JF. (1995). D1 dopamine receptors influence Fos immunoreactivity in the globus pallidus and subthalamic nucleus of intact and nigrostriatal-lesioned rats. Brain research. 703 [PubMed]
Sadek AR, Magill PJ, Bolam JP. (2007). A single-cell analysis of intrinsic connectivity in the rat globus pallidus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]
Sato F, Lavallée P, Lévesque M, Parent A. (2000). Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. The Journal of comparative neurology. 417 [PubMed]
Schnitzler A et al. (1998). Detection of n:m phase locking from noisy data: Application to magnetoencephalography Phys Rev Lett. 81
Schultheiss NW, Edgerton JR, Jaeger D. (2010). Phase response curve analysis of a full morphological globus pallidus neuron model reveals distinct perisomatic and dendritic modes of synaptic integration. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]
Sharott A et al. (2005). Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat. The European journal of neuroscience. 21 [PubMed]
Shen GY, Chen WR, Midtgaard J, Shepherd GM, Hines ML. (1999). Computational analysis of action potential initiation in mitral cell soma and dendrites based on dual patch recordings. Journal of neurophysiology. 82 [PubMed]
Shin RM et al. (2003). Dopamine D4 receptor-induced postsynaptic inhibition of GABAergic currents in mouse globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]
Silberstein P et al. (2003). Patterning of globus pallidus local field potentials differs between Parkinson's disease and dystonia. Brain : a journal of neurology. 126 [PubMed]
Sims RE, Woodhall GL, Wilson CL, Stanford IM. (2008). Functional characterization of GABAergic pallidopallidal and striatopallidal synapses in the rat globus pallidus in vitro. The European journal of neuroscience. 28 [PubMed]
Soares J et al. (2004). Role of external pallidal segment in primate parkinsonism: comparison of the effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism and lesions of the external pallidal segment. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]
Surmeier DJ et al. (1992). Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proceedings of the National Academy of Sciences of the United States of America. 89 [PubMed]
Terman D, Rubin JE, Yew AC, Wilson CJ. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]
Thomson DJ. (1982). Spectrum estimation and harmonic analysis Proc IEEE. 70
Uhlhaas PJ, Singer W. (2006). Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron. 52 [PubMed]
Urbain N et al. (2000). Unrelated course of subthalamic nucleus and globus pallidus neuronal activities across vigilance states in the rat. The European journal of neuroscience. 12 [PubMed]
Urbain N, Rentéro N, Gervasoni D, Renaud B, Chouvet G. (2002). The switch of subthalamic neurons from an irregular to a bursting pattern does not solely depend on their GABAergic inputs in the anesthetic-free rat. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]
Wahl-Schott C, Biel M. (2009). HCN channels: structure, cellular regulation and physiological function. Cellular and molecular life sciences : CMLS. 66 [PubMed]
Willems FMJ, Shtarkov YM, Tjalkens T. (1995). The context tree weighting method basic properties. IEEE Trans. Info. Theory. IT-41
Xu J, Kang N, Jiang L, Nedergaard M, Kang J. (2005). Activity-dependent long-term potentiation of intrinsic excitability in hippocampal CA1 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]
Yelnik J. (2002). Functional anatomy of the basal ganglia. Movement disorders : official journal of the Movement Disorder Society. 17 Suppl 3 [PubMed]
Jaeger D et al. (2017). Robust Transmission of Rate Coding in the Inhibitory Purkinje Cell to Cerebellar Nuclei Pathway in Awake Mice PLOS Computational Biology.