Ait Ouares K, Filipis L, Tzilivaki A, Poirazi P, Canepari M. (2019). Two Distinct Sets of Ca2+ and K+ Channels Are Activated at Different Membrane Potentials by the Climbing Fiber Synaptic Potential in Purkinje Neuron Dendrites. The Journal of neuroscience : the official journal of the Society for Neuroscience. 39 [PubMed]
Connelly WM, Crunelli V, Errington AC. (2016). Passive Synaptic Normalization and Input Synchrony-Dependent Amplification of Cortical Feedback in Thalamocortical Neuron Dendrites. The Journal of neuroscience : the official journal of the Society for Neuroscience. 36 [PubMed]
Coop AD, Reeke GN. (2001). The composite neuron: a realistic one-compartment Purkinje cell model suitable for large-scale neuronal network simulations. Journal of computational neuroscience. 10 [PubMed]
DiGregorio DA, Nusser Z, Silver RA. (2002). Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron. 35 [PubMed]
Dzubay JA, Jahr CE. (1999). The concentration of synaptically released glutamate outside of the climbing fiber-Purkinje cell synaptic cleft. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]
Gabbiani F, Cox SJ. (2010). Mathematics for Neuroscientists.
Hennig MH, Postlethwaite M, Forsythe ID, Graham BP. (2008). Interactions between multiple sources of short-term plasticity during evoked and spontaneous activity at the rat calyx of Held. The Journal of physiology. 586 [PubMed]
Momiyama A et al. (2003). The density of AMPA receptors activated by a transmitter quantum at the climbing fibre-Purkinje cell synapse in immature rats. The Journal of physiology. 549 [PubMed]
Roth A, Häusser M. (2001). Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings. The Journal of physiology. 535 [PubMed]
Steuber V et al. (2007). Cerebellar LTD and pattern recognition by Purkinje cells. Neuron. 54 [PubMed]