Yamazaki T, Tanaka S. (2009). Computational models of timing mechanisms in the cerebellar granular layer. Cerebellum (London, England). 8 [PubMed]

See more from authors: Yamazaki T · Tanaka S

References and models cited by this paper
References and models that cite this paper

Garrido JA, Luque NR, D'Angelo E, Ros E. (2013). Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation Frontiers in neural circuits. 7 [PubMed]

Luque NR, Garrido JA, Carrillo RR, D'Angelo E, Ros E. (2014). Fast convergence of learning requires plasticity between inferior olive and deep cerebellar nuclei in a manipulation task: a closed-loop robotic simulation. Frontiers in computational neuroscience. 8 [PubMed]

Luque NR, Naveros F, Carrillo RR, Ros E, Arleo A. (2019). Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation. PLoS computational biology. 15 [PubMed]

Rössert C, Dean P, Porrill J. (2015). At the Edge of Chaos: How Cerebellar Granular Layer Network Dynamics Can Provide the Basis for Temporal Filters. PLoS computational biology. 11 [PubMed]

Wilson CJ, Beverlin B, Netoff T. (2011). Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation. Frontiers in systems neuroscience. 5 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.