Carey RM, Sherwood WE, Shipley MT, Borisyuk A, Wachowiak M. (2015). Role of intraglomerular circuits in shaping temporally structured responses to naturalistic inhalation-driven sensory input to the olfactory bulb. Journal of neurophysiology. 113 [PubMed]
Gorin M et al. (2016). Interdependent Conductances Drive Infraslow Intrinsic Rhythmogenesis in a Subset of Accessory Olfactory Bulb Projection Neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 36 [PubMed]
Migliore M, Cavarretta F, Hines ML, Shepherd GM. (2014). Distributed organization of a brain microcircuit analyzed by three-dimensional modeling: the olfactory bulb. Frontiers in computational neuroscience. 8 [PubMed]
Sanders H, Berends M, Major G, Goldman MS, Lisman JE. (2013). NMDA and GABAB (KIR) conductances: the "perfect couple" for bistability. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]
Sanders H et al. (2014). A network that performs brute-force conversion of a temporal sequence to a spatial pattern: relevance to odor recognition. Frontiers in computational neuroscience. 8 [PubMed]
Short SM, Morse TM, McTavish TS, Shepherd GM, Verhagen JV. (2016). Respiration Gates Sensory Input Responses in the Mitral Cell Layer of the Olfactory Bulb. PloS one. 11 [PubMed]
Wilson CD, Serrano GO, Koulakov AA, Rinberg D. (2017). A primacy code for odor identity. Nature communications. 8 [PubMed]
Yu Y et al. (2013). Sparse distributed representation of odors in a large-scale olfactory bulb circuit. PLoS computational biology. 9 [PubMed]
Yu Y, Migliore M, Hines ML, Shepherd GM. (2014). Sparse coding and lateral inhibition arising from balanced and unbalanced dendrodendritic excitation and inhibition. The Journal of neuroscience : the official journal of the Society for Neuroscience. 34 [PubMed]