Hemmings HC, Nairn AC, Greengard P. (1984). DARPP-32, a dopamine- and adenosine 3':5'-monophosphate-regulated neuronal phosphoprotein. II. Comparison of the kinetics of phosphorylation of DARPP-32 and phosphatase inhibitor 1. The Journal of biological chemistry. 259 [PubMed]

See more from authors: Hemmings HC · Nairn AC · Greengard P

References and models cited by this paper
References and models that cite this paper

Chay A, Zamparo I, Koschinski A, Zaccolo M, Blackwell KT. (2016). Control of ßAR- and N-methyl-D-aspartate (NMDA) Receptor-Dependent cAMP Dynamics in Hippocampal Neurons. PLoS computational biology. 12 [PubMed]

Kim B, Hawes SL, Gillani F, Wallace LJ, Blackwell KT. (2013). Signaling pathways involved in striatal synaptic plasticity are sensitive to temporal pattern and exhibit spatial specificity. PLoS computational biology. 9 [PubMed]

Lindskog M, Kim M, Wikström MA, Blackwell KT, Kotaleski JH. (2006). Transient calcium and dopamine increase PKA activity and DARPP-32 phosphorylation. PLoS computational biology. 2 [PubMed]

Mattioni M, Le Novère N. (2013). Integration of biochemical and electrical signaling-multiscale model of the medium spiny neuron of the striatum. PloS one. 8 [PubMed]

Nakano T, Doi T, Yoshimoto J, Doya K. (2010). A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity. PLoS computational biology. 6 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.