Agus TR, Thorpe SJ, Pressnitzer D. (2010). Rapid formation of robust auditory memories: insights from noise. Neuron. 66 [PubMed]
Bastos AM et al. (2012). Canonical microcircuits for predictive coding. Neuron. 76 [PubMed]
Bhalla US. (2017). Synaptic input sequence discrimination on behavioral timescales mediated by reaction-diffusion chemistry in dendrites. eLife. 6 [PubMed]
Bienenstock EL, Cooper LN, Munro PW. (1982). Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2 [PubMed]
Branco T, Clark BA, Häusser M. (2010). Dendritic discrimination of temporal input sequences in cortical neurons. Science (New York, N.Y.). 329 [PubMed]
Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR. (2001). Efficiency and ambiguity in an adaptive neural code. Nature. 412 [PubMed]
Friston K. (2010). The free-energy principle: a unified brain theory? Nature reviews. Neuroscience. 11 [PubMed]
Földiák P. (1990). Forming sparse representations by local anti-Hebbian learning. Biological cybernetics. 64 [PubMed]
HUBEL DH, WIESEL TN. (1959). Receptive fields of single neurones in the cat's striate cortex. The Journal of physiology. 148 [PubMed]
Hawkins J, Ahmad S. (2016). Why Neurons Have Thousands of Synapses, a Theory of Sequence Memory in Neocortex. Frontiers in neural circuits. 10 [PubMed]
Hiratani N, Fukai T. (2018). Redundancy in synaptic connections enables neurons to learn optimally. Proceedings of the National Academy of Sciences of the United States of America. 115 [PubMed]
Hyvärinen A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE transactions on neural networks. 10 [PubMed]
Hyvärinen A, Oja E. (2000). Independent component analysis: algorithms and applications. Neural networks : the official journal of the International Neural Network Society. 13 [PubMed]
Jahnke S, Timme M, Memmesheimer RM. (2015). A Unified Dynamic Model for Learning, Replay, and Sharp-Wave/Ripples. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35 [PubMed]
Jin X, Costa RM. (2010). Start/stop signals emerge in nigrostriatal circuits during sequence learning. Nature. 466 [PubMed]
Jin X, Tecuapetla F, Costa RM. (2014). Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nature neuroscience. 17 [PubMed]
Larkum M. (2013). A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends in neurosciences. 36 [PubMed]
Larkum ME, Zhu JJ, Sakmann B. (1999). A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature. 398 [PubMed]
Legenstein R, Maass W. (2011). Branch-specific plasticity enables self-organization of nonlinear computation in single neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]
Linden DJ. (1999). The return of the spike: postsynaptic action potentials and the induction of LTP and LTD. Neuron. 22 [PubMed]
Lu JT, Li CY, Zhao JP, Poo MM, Zhang XH. (2007). Spike-timing-dependent plasticity of neocortical excitatory synapses on inhibitory interneurons depends on target cell type. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]
Magee JC, Johnston D. (1997). A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science (New York, N.Y.). 275 [PubMed]
Maravall M, Petersen RS, Fairhall AL, Arabzadeh E, Diamond ME. (2007). Shifts in coding properties and maintenance of information transmission during adaptation in barrel cortex. PLoS biology. 5 [PubMed]
Markram H, Lübke J, Frotscher M, Sakmann B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science (New York, N.Y.). 275 [PubMed]
Masquelier T, Guyonneau R, Thorpe SJ. (2009). Competitive STDP-based spike pattern learning. Neural computation. 21 [PubMed]
Memmesheimer RM, Rubin R, Olveczky BP, Sompolinsky H. (2014). Learning precisely timed spikes. Neuron. 82 [PubMed]
Mensi S, Hagens O, Gerstner W, Pozzorini C. (2016). Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons. PLoS computational biology. 12 [PubMed]
Murayama M et al. (2009). Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature. 457 [PubMed]
Nessler B, Pfeiffer M, Buesing L, Maass W. (2013). Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity. PLoS computational biology. 9 [PubMed]
Olshausen BA, Field DJ. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 381 [PubMed]
Pfister JP, Toyoizumi T, Barber D, Gerstner W. (2006). Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning. Neural computation. 18 [PubMed]
Pozzorini C, Naud R, Mensi S, Gerstner W. (2013). Temporal whitening by power-law adaptation in neocortical neurons. Nature neuroscience. 16 [PubMed]
Richards BA, Lillicrap TP. (2019). Dendritic solutions to the credit assignment problem. Current opinion in neurobiology. 54 [PubMed]
Savin C, Joshi P, Triesch J. (2010). Independent component analysis in spiking neurons. PLoS computational biology. 6 [PubMed]
Sjöström PJ, Häusser M. (2006). A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron. 51 [PubMed]
Sprekeler H, Michaelis C, Wiskott L. (2007). Slowness: an objective for spike-timing-dependent plasticity? PLoS computational biology. 3 [PubMed]
Ujfalussy BB, Makara JK, Lengyel M, Branco T. (2018). Global and Multiplexed Dendritic Computations under In Vivo-like Conditions. Neuron. 100 [PubMed]
Urbanczik R, Senn W. (2014). Learning by the dendritic prediction of somatic spiking. Neuron. 81 [PubMed]
Vogels TP, Sprekeler H, Zenke F, Clopath C, Gerstner W. (2011). Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science (New York, N.Y.). 334 [PubMed]
Wiskott L, Sejnowski TJ. (2002). Slow feature analysis: unsupervised learning of invariances. Neural computation. 14 [PubMed]
Woodin MA, Ganguly K, Poo MM. (2003). Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl- transporter activity. Neuron. 39 [PubMed]