Asabuki T, Fukai T. (2020). Somatodendritic consistency check for temporal feature segmentation. Nature communications. 11 [PubMed]
Davison AP, Frégnac Y. (2006). Learning cross-modal spatial transformations through spike timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Doyon N et al. (2011). Efficacy of synaptic inhibition depends on multiple, dynamically interacting mechanisms implicated in chloride homeostasis. PLoS computational biology. 7 [PubMed]
Hummos A, Franklin CC, Nair SS. (2014). Intrinsic mechanisms stabilize encoding and retrieval circuits differentially in a hippocampal network model. Hippocampus. 24 [PubMed]
Jedlicka P, Deller T, Gutkin BS, Backus KH. (2011). Activity-dependent intracellular chloride accumulation and diffusion controls GABA(A) receptor-mediated synaptic transmission. Hippocampus. 21 [PubMed]
Masuda N, Kori H. (2007). Formation of feedforward networks and frequency synchrony by spike-timing-dependent plasticity. Journal of computational neuroscience. 22 [PubMed]
Morita K, Okada M, Aihara K. (2007). Selectivity and stability via dendritic nonlinearity. Neural computation. 19 [PubMed]
Roberts PD. (2007). Stability of complex spike timing-dependent plasticity in cerebellar learning. Journal of computational neuroscience. 22 [PubMed]
Sadeh S, Clopath C, Rotter S. (2015). Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity. PLoS computational biology. 11 [PubMed]
Talathi SS, Hwang DU, Ditto WL. (2008). Spike timing dependent plasticity promotes synchrony of inhibitory networks in the presence of heterogeneity. Journal of computational neuroscience. 25 [PubMed]
Vida I, Bartos M, Jonas P. (2006). Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron. 49 [PubMed]
Vogels TP, Sprekeler H, Zenke F, Clopath C, Gerstner W. (2011). Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science (New York, N.Y.). 334 [PubMed]