De Schutter E. (1998). Dendritic voltage and calcium-gated channels amplify the variability of postsynaptic responses in a Purkinje cell model. Journal of neurophysiology. 80 [PubMed]
Diwakar S, Parasuram H, Nair B, Medini C, Nair M. (2017). Computational Neuroscience of Timing, Plasticity and Function in Cerebellum Microcircuits (Chapter 12) Computational Neurology and Psychiatry, Springer Series in Bio-/Neuroinformatics.
Jaeger D. (2003). No Parallel Fiber Volleys in the Cerebellar Cortex: Evidence from Cross-Correlation Analysis between Purkinje Cells in a Computer Model and in Recordings from Anesthetized Rats Journal of computational neuroscience. 14 [PubMed]
Jaeger D, De Schutter E, Bower JM. (1997). The role of synaptic and voltage-gated currents in the control of Purkinje cell spiking: a modeling study. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]
Santamaria F, Jaeger D, De Schutter E, Bower JM. (2002). Modulatory effects of parallel fiber and molecular layer interneuron synaptic activity on purkinje cell responses to ascending segment input: a modeling study. Journal of computational neuroscience. 13 [PubMed]
Steuber V, Schultheiss NW, Silver RA, De Schutter E, Jaeger D. (2011). Determinants of synaptic integration and heterogeneity in rebound firing explored with data-driven models of deep cerebellar nucleus cells. Journal of computational neuroscience. 30 [PubMed]