Amos A. (2000). A computational model of information processing in the frontal cortex and basal ganglia. Journal of cognitive neuroscience. 12 [PubMed]
Bogacz R, Gurney K. (2007). The basal ganglia and cortex implement optimal decision making between alternative actions. Neural computation. 19 [PubMed]
Chan CS, Shigemoto R, Mercer JN, Surmeier DJ. (2004). HCN2 and HCN1 channels govern the regularity of autonomous pacemaking and synaptic resetting in globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]
Edgerton JR, Hanson JE, Günay C, Jaeger D. (2010). Dendritic sodium channels regulate network integration in globus pallidus neurons: a modeling study. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]
Frank MJ. (2006). Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural networks : the official journal of the International Neural Network Society. 19 [PubMed]
Frank MJ, Samanta J, Moustafa AA, Sherman SJ. (2007). Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science (New York, N.Y.). 318 [PubMed]
Frank MJ, Scheres A, Sherman SJ. (2007). Understanding decision-making deficits in neurological conditions: insights from models of natural action selection. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 362 [PubMed]
Gurney K, Prescott TJ, Redgrave P. (2001). A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biological cybernetics. 84 [PubMed]
Hadipour Niktarash A. (2003). Transmission of the subthalamic nucleus oscillatory activity to the cortex: a computational approach. Journal of computational neuroscience. 15 [PubMed]
Humphries MD, Stewart RD, Gurney KN. (2006). A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Kötter R, Wickens J. (1998). Striatal mechanisms in Parkinson's disease: new insights from computer modeling. Artificial intelligence in medicine. 13 [PubMed]
Leblois A, Boraud T, Meissner W, Bergman H, Hansel D. (2006). Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Liénard J, Girard B. (2014). A biologically constrained model of the whole basal ganglia addressing the paradoxes of connections and selection. Journal of computational neuroscience. 36 [PubMed]
Prescott TJ, Montes González FM, Gurney K, Humphries MD, Redgrave P. (2006). A robot model of the basal ganglia: behavior and intrinsic processing. Neural networks : the official journal of the International Neural Network Society. 19 [PubMed]
Terman D, Rubin JE, Yew AC, Wilson CJ. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]