Smith Y, Bevan MD, Shink E, Bolam JP. (1998). Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience. 86 [PubMed]

See more from authors: Smith Y · Bevan MD · Shink E · Bolam JP

References and models cited by this paper
References and models that cite this paper

Bogacz R, Gurney K. (2007). The basal ganglia and cortex implement optimal decision making between alternative actions. Neural computation. 19 [PubMed]

Edgerton JR, Hanson JE, Günay C, Jaeger D. (2010). Dendritic sodium channels regulate network integration in globus pallidus neurons: a modeling study. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

Gillies A, Willshaw D. (2006). Membrane channel interactions underlying rat subthalamic projection neuron rhythmic and bursting activity. Journal of neurophysiology. 95 [PubMed]

Gorodetski L et al. (2021). Endocannabinoids and Dopamine Balance Basal Ganglia Output. Frontiers in cellular neuroscience. 15 [PubMed]

Gurney K, Prescott TJ, Redgrave P. (2001). A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biological cybernetics. 84 [PubMed]

Hanson JE, Smith Y, Jaeger D. (2004). Sodium channels and dendritic spike initiation at excitatory synapses in globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

Humphries MD, Stewart RD, Gurney KN. (2006). A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Prescott TJ, Montes González FM, Gurney K, Humphries MD, Redgrave P. (2006). A robot model of the basal ganglia: behavior and intrinsic processing. Neural networks : the official journal of the International Neural Network Society. 19 [PubMed]

Salimi-Badr A, Ebadzadeh MM, Darlot C. (2017). A possible correlation between the basal ganglia motor function and the inverse kinematics calculation. Journal of computational neuroscience. 43 [PubMed]

So RQ, Kent AR, Grill WM. (2012). Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: a computational modeling study. Journal of computational neuroscience. 32 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.