Akemann W, Knöpfel T. (2006). Interaction of Kv3 potassium channels and resurgent sodium current influences the rate of spontaneous firing of Purkinje neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Akemann W, Lundby A, Mutoh H, Knöpfel T. (2009). Effect of voltage sensitive fluorescent proteins on neuronal excitability. Biophysical journal. 96 [PubMed]
Doiron B, Longtin A, Turner RW, Maler L. (2001). Model of gamma frequency burst discharge generated by conditional backpropagation. Journal of neurophysiology. 86 [PubMed]
Fernandez FR, Mehaffey WH, Molineux ML, Turner RW. (2005). High-threshold K+ current increases gain by offsetting a frequency-dependent increase in low-threshold K+ current. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]
Kanold PO, Manis PB. (1999). Transient potassium currents regulate the discharge patterns of dorsal cochlear nucleus pyramidal cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]
Kotaleski JH et al. (2011). Striatal fast-spiking interneurons: from firing patterns to postsynaptic impact Front. Syst. Neurosci.. 5:57
Masurkar AV, Chen WR. (2011). Potassium currents of olfactory bulb juxtaglomerular cells: characterization, simulation, and implications for plateau potential firing. Neuroscience. 192 [PubMed]
Rothman JS, Manis PB. (2003). Kinetic analyses of three distinct potassium conductances in ventral cochlear nucleus neurons. Journal of neurophysiology. 89 [PubMed]
Sanchez RM, Surkis A, Leonard CS. (1998). Voltage-clamp analysis and computer simulation of a novel cesium-resistant A-current in guinea pig laterodorsal tegmental neurons. Journal of neurophysiology. 79 [PubMed]
Schwarzacher SW, Cuntz H, Jedlicka P, Beining M, Mongiat LA. (2017). T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells eLife.
Wang LY, Gan L, Forsythe ID, Kaczmarek LK. (1998). Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones. The Journal of physiology. 509 ( Pt 1) [PubMed]