Durstewitz D. (2006). A few important points about dopamine's role in neural network dynamics. Pharmacopsychiatry. 39 Suppl 1 [PubMed]
Fall CP, Rinzel J. (2006). An intracellular Ca2+ subsystem as a biologically plausible source of intrinsic conditional bistability in a network model of working memory. Journal of computational neuroscience. 20 [PubMed]
Florian RV. (2007). Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity. Neural computation. 19 [PubMed]
Hazy TE, Frank MJ, O'reilly RC. (2007). Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 362 [PubMed]
Izhikevich EM. (2007). Solving the distal reward problem through linkage of STDP and dopamine signaling. Cerebral cortex (New York, N.Y. : 1991). 17 [PubMed]
Major G, Polsky A, Denk W, Schiller J, Tank DW. (2008). Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. Journal of neurophysiology. 99 [PubMed]
Papoutsi A, Sidiropoulou K, Cutsuridis V, Poirazi P. (2013). Induction and modulation of persistent activity in a layer V PFC microcircuit model. Frontiers in neural circuits. 7 [PubMed]
Reneaux M, Gupta R. (2018). Prefronto-cortical dopamine D1 receptor sensitivity can critically influence working memory maintenance during delayed response tasks PLOS ONE. 13(5)
Stiefel KM, Gutkin BS, Sejnowski TJ. (2009). The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons. Journal of computational neuroscience. 26 [PubMed]
Yu Q, Tang H, Hu J, Tan KC. (2017). Precise-Spike-Driven Synaptic Plasticity for Hetero Association of Spatiotemporal Spike Patterns Neuromorphic Cognitive Systems: A Learning and Memory Centered Approach.