Hines ML, Carnevale NT. (2003). NEURON simulation environment The Handbook of Brain Theory and Neural Networks (2nd Ed).

See more from authors: Hines ML · Carnevale NT

References and models cited by this paper
References and models that cite this paper

Bianchi D et al. (2012). On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons. Journal of computational neuroscience. 33 [PubMed]

Bingham CS et al. (2020). ROOTS: An Algorithm to Generate Biologically Realistic Cortical Axons and an Application to Electroceutical Modeling Frontiers in Computational Neuroscience. 14

Gewaltig MO, Cannon R. (2014). Current practice in software development for computational neuroscience and how to improve it. PLoS computational biology. 10 [PubMed]

Grein S, Stepniewski M, Reiter S, Knodel MM, Queisser G. (2014). 1D-3D hybrid modeling-from multi-compartment models to full resolution models in space and time. Frontiers in neuroinformatics. 8 [PubMed]

Pousinha PA et al. (2019). The Amyloid Precursor Protein C-Terminal Domain Alters CA1 Neuron Firing, Modifying Hippocampus Oscillations and Impairing Spatial Memory Encoding. Cell reports. 29 [PubMed]

Timofeeva Y, Lord GJ, Coombes S. (2006). Dendritic cable with active spines: A modelling study in the spike-diffuse-spike framework Neurocomputing. 69

Timofeeva Y, Lord GJ, Coombes S. (2006). Spatio-temporal filtering properties of a dendritic cable with active spines: a modeling study in the spike-diffuse-spike framework. Journal of computational neuroscience. 21 [PubMed]

Vazquez Y, Mendez B, Trueta C, De-Miguel FF. (2009). Summation of excitatory postsynaptic potentials in electrically-coupled neurones. Neuroscience. 163 [PubMed]

Woo B, Shin D, Yang D, Choi J. (2005). Reduced model and simulation of neuron with passive dendritic cable: an eigenfunction expansion approach. Journal of computational neuroscience. 19 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.