Clopath C, Badura A, De Zeeuw CI, Brunel N. (2014). A cerebellar learning model of vestibulo-ocular reflex adaptation in wild-type and mutant mice. The Journal of neuroscience : the official journal of the Society for Neuroscience. 34 [PubMed]
Leibold C, Kempter R. (2006). Memory capacity for sequences in a recurrent network with biological constraints. Neural computation. 18 [PubMed]
Masoli S, D'Angelo E. (2017). Synaptic Activation of a Detailed Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause Responses in Active Dendrites. Frontiers in cellular neuroscience. 11 [PubMed]
Mittmann W, Koch U, Häusser M. (2005). Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells. The Journal of physiology. 563 [PubMed]
Portfors CV, Roberts PD. (2007). Temporal and frequency characteristics of cartwheel cells in the dorsal cochlear nucleus of the awake mouse. Journal of neurophysiology. 98 [PubMed]
Roberts PD. (2007). Stability of complex spike timing-dependent plasticity in cerebellar learning. Journal of computational neuroscience. 22 [PubMed]
Rössert C, Dean P, Porrill J. (2015). At the Edge of Chaos: How Cerebellar Granular Layer Network Dynamics Can Provide the Basis for Temporal Filters. PLoS computational biology. 11 [PubMed]
Santamaria F, Tripp PG, Bower JM. (2007). Feedforward inhibition controls the spread of granule cell-induced Purkinje cell activity in the cerebellar cortex. Journal of neurophysiology. 97 [PubMed]
Scheler G. (2017). Logarithmic distributions prove that intrinsic learning is Hebbian. F1000Research. 6 [PubMed]
Steuber V et al. (2007). Cerebellar LTD and pattern recognition by Purkinje cells. Neuron. 54 [PubMed]
Wilson CJ, Beverlin B, Netoff T. (2011). Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation. Frontiers in systems neuroscience. 5 [PubMed]