Ariav G, Polsky A, Schiller J. (2003). Submillisecond precision of the input-output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]
Basalyga G, Salinas E. (2006). When response variability increases neural network robustness to synaptic noise. Neural computation. 18 [PubMed]
Bugmann G, Christodoulou C, Clarkson T. (). A Spiking Neuron Model: Applications and Learning. Neural Networks. 15
Chance FS. (2007). Receiver operating characteristic (ROC) analysis for characterizing synaptic efficacy. Journal of neurophysiology. 97 [PubMed]
Chance FS, Abbott LF, Reyes AD. (2002). Gain modulation from background synaptic input. Neuron. 35 [PubMed]
Câteau H, Reyes AD. (2006). Relation between single neuron and population spiking statistics and effects on network activity. Physical review letters. 96 [PubMed]
Delord B, Baraduc P, Costalat R, Burnod Y, Guigon E. (2000). A model study of cellular short-term memory produced by slowly inactivating potassium conductances. Journal of computational neuroscience. 8 [PubMed]
Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ. (2001). Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience. 107 [PubMed]
Destexhe A, Rudolph M, Paré D. (2003). The high-conductance state of neocortical neurons in vivo. Nature reviews. Neuroscience. 4 [PubMed]
Durstewitz D, Gabriel T. (2007). Dynamical basis of irregular spiking in NMDA-driven prefrontal cortex neurons. Cerebral cortex (New York, N.Y. : 1991). 17 [PubMed]
Feng J, Zhang P. (2001). Behavior of integrate-and-fire and Hodgkin-Huxley models with correlated inputs. Physical review. E, Statistical, nonlinear, and soft matter physics. 63 [PubMed]
Jackson BS. (2004). Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons. Neural computation. 16 [PubMed]
Keane A, Henderson JA, Gong P. (2018). Dynamical patterns underlying response properties of cortical circuits. Journal of the Royal Society, Interface. 15 [PubMed]
Kitano K, Fukai T. (2007). Variability v.s. synchronicity of neuronal activity in local cortical network models with different wiring topologies. Journal of computational neuroscience. 23 [PubMed]
Kobayashi R, Tsubo Y, Shinomoto S. (2009). Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Frontiers in computational neuroscience. 3 [PubMed]
Kretzberg J, Egelhaaf M, Warzecha AK. (2001). Membrane potential fluctuations determine the precision of spike timing and synchronous activity: a model study. Journal of computational neuroscience. 10 [PubMed]
Kretzberg J, Warzecha AK, Egelhaaf M. (2001). Neural coding with graded membrane potential changes and spikes. Journal of computational neuroscience. 11 [PubMed]
Legenstein R, Pecevski D, Maass W. (2008). A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. PLoS computational biology. 4 [PubMed]
Lestienne R. (2001). Spike timing, synchronization and information processing on the sensory side of the central nervous system. Progress in neurobiology. 65 [PubMed]
Li X, Ascoli GA. (2006). Computational simulation of the input-output relationship in hippocampal pyramidal cells. Journal of computational neuroscience. 21 [PubMed]
Li X, Ascoli GA. (2008). Effects of synaptic synchrony on the neuronal input-output relationship. Neural computation. 20 [PubMed]
Litvak V, Sompolinsky H, Segev I, Abeles M. (2003). On the transmission of rate code in long feedforward networks with excitatory-inhibitory balance. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]
Meffin H, Burkitt AN, Grayden DB. (2004). An analytical model for the "large, fluctuating synaptic conductance state" typical of neocortical neurons in vivo. Journal of computational neuroscience. 16 [PubMed]
Nakahara H, Amari S, Richmond BJ. (2006). A comparison of descriptive models of a single spike train by information-geometric measure. Neural computation. 18 [PubMed]
Prescott SA, De Koninck Y. (2003). Gain control of firing rate by shunting inhibition: roles of synaptic noise and dendritic saturation. Proceedings of the National Academy of Sciences of the United States of America. 100 [PubMed]
Renart A, Moreno-Bote R, Wang XJ, Parga N. (2007). Mean-driven and fluctuation-driven persistent activity in recurrent networks. Neural computation. 19 [PubMed]
Rowat P. (2007). Interspike interval statistics in the stochastic Hodgkin-Huxley model: coexistence of gamma frequency bursts and highly irregular firing. Neural computation. 19 [PubMed]
Rowat PF, Elson RC. (2004). State-dependent effects of Na channel noise on neuronal burst generation. Journal of computational neuroscience. 16 [PubMed]
Rudolph M, Destexhe A. (2003). The discharge variability of neocortical neurons during high-conductance states. Neuroscience. 119 [PubMed]
Rudolph M, Destexhe A. (2003). Tuning neocortical pyramidal neurons between integrators and coincidence detectors. Journal of computational neuroscience. 14 [PubMed]
Rudolph M, Destexhe A. (2006). Analytical integrate-and-fire neuron models with conductance-based dynamics for event-driven simulation strategies. Neural computation. 18 [PubMed]
Salinas E, Sejnowski TJ. (2001). Correlated neuronal activity and the flow of neural information. Nature reviews. Neuroscience. 2 [PubMed]
Singh C, Levy WB. (2017). A consensus layer V pyramidal neuron can sustain interpulse-interval coding. PloS one. 12 [PubMed]
Sripati AP, Johnson KO. (2006). Dynamic gain changes during attentional modulation. Neural computation. 18 [PubMed]
Stiefel KM, Englitz B, Sejnowski TJ. (2013). Origin of intrinsic irregular firing in cortical interneurons. Proceedings of the National Academy of Sciences of the United States of America. 110 [PubMed]
Tiesinga PH, Fellous JM, José JV, Sejnowski TJ. (2002). Information transfer in entrained cortical neurons. Network (Bristol, England). 13 [PubMed]