Davison AP et al. (2008). PyNN: A Common Interface for Neuronal Network Simulators. Frontiers in neuroinformatics. 2 [PubMed]

See more from authors: Davison AP · Brüderle D · Eppler J · Kremkow J · Muller E · Pecevski D · Perrinet L · Yger P

References and models cited by this paper
References and models that cite this paper

Brette R, Goodman DF. (2011). Vectorized algorithms for spiking neural network simulation. Neural computation. 23 [PubMed]

Chen W, De Schutter E. (2014). Python-based geometry preparation and simulation visualization toolkits for STEPS. Frontiers in neuroinformatics. 8 [PubMed]

Djurfeldt M. (2012). The connection-set algebra--a novel formalism for the representation of connectivity structure in neuronal network models. Neuroinformatics. 10 [PubMed]

Eglen SJ et al. (2017). Toward standard practices for sharing computer code and programs in neuroscience. Nature neuroscience. 20 [PubMed]

Evans BD, Jarvis S, Schultz SR, Nikolic K. (2016). PyRhO: A Multiscale Optogenetics Simulation Platform. Frontiers in neuroinformatics. 10 [PubMed]

Friedrich P, Vella M, Gulyás AI, Freund TF, Káli S. (2014). A flexible, interactive software tool for fitting the parameters of neuronal models. Frontiers in neuroinformatics. 8 [PubMed]

Gewaltig MO, Cannon R. (2014). Current practice in software development for computational neuroscience and how to improve it. PLoS computational biology. 10 [PubMed]

Gleeson P et al. (2010). NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS computational biology. 6 [PubMed]

Jones A, Singh N, Huyck CR, Gandhi V. (2016). Neuron-Based Control Mechanisms for a Robotic Arm and Hand ICMRRS 2017: International Conference on Medical Robotics and Robotics for Surgery, Paris, France. 3(2)

Lazar AA, Liu T, Turkcan MK, Zhou Y. (2021). Accelerating with FlyBrainLab the discovery of the functional logic of the Drosophila brain in the connectomic and synaptomic era eLife. 10 [PubMed]

Lytton WW et al. (2016). Simulation Neurotechnologies for Advancing Brain Research: Parallelizing Large Networks in NEURON. Neural computation. 28 [PubMed]

Marre O, Yger P, Davison AP, Frégnac Y. (2009). Reliable recall of spontaneous activity patterns in cortical networks. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Mattioni M, Cohen U, Le Novère N. (2012). Neuronvisio: A Graphical User Interface with 3D Capabilities for NEURON. Frontiers in neuroinformatics. 6 [PubMed]

McDougal RA, Bulanova AS, Lytton WW. (2016). Reproducibility in Computational Neuroscience Models and Simulations. IEEE transactions on bio-medical engineering. 63 [PubMed]

McDougal RA, Morse TM, Hines ML, Shepherd GM. (2015). ModelView for ModelDB: Online Presentation of Model Structure. Neuroinformatics. 13 [PubMed]

Richert M, Nageswaran JM, Dutt N, Krichmar JL. (2011). An efficient simulation environment for modeling large-scale cortical processing. Frontiers in neuroinformatics. 5 [PubMed]

Richmond P, Buesing L, Giugliano M, Vasilaki E. (2011). Democratic population decisions result in robust policy-gradient learning: a parametric study with GPU simulations. PloS one. 6 [PubMed]

Sen-Bhattacharya B et al. (2017). A Spiking Neural Network Model of the Lateral Geniculate Nucleus on the SpiNNaker Machine. Frontiers in neuroscience. 11 [PubMed]

Stockton DB, Santamaria F. (2015). NeuroManager: a workflow analysis based simulation management engine for computational neuroscience. Frontiers in neuroinformatics. 9 [PubMed]

Tikidji-Hamburyan RA, El-Ghazawi TA, Narayana V, Bozkus Z. (2017). Software for Brain Network Simulations: A Comparative Study Front. Neuroinform..

Tomm C, Avermann M, Petersen C, Gerstner W, Vogels TP. (2014). Connection-type-specific biases make uniform random network models consistent with cortical recordings. Journal of neurophysiology. 112 [PubMed]

Vannucci L, Falotico E, Laschi C. (2017). Proprioceptive Feedback through a Neuromorphic Muscle Spindle Model. Frontiers in neuroscience. 11 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.