Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L. (2007). Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature. 450 [PubMed]
Airan RD, Thompson KR, Fenno LE, Bernstein H, Deisseroth K. (2009). Temporally precise in vivo control of intracellular signalling. Nature. 458 [PubMed]
Aravanis AM et al. (2007). An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. Journal of neural engineering. 4 [PubMed]
Arenkiel BR et al. (2007). In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron. 54 [PubMed]
Arlow RL, Foutz TJ, McIntyre CC. (2013). Theoretical principles underlying optical stimulation of myelinated axons expressing channelrhodopsin-2. Neuroscience. 248 [PubMed]
Arrenberg AB, Stainier DY, Baier H, Huisken J. (2010). Optogenetic control of cardiac function. Science (New York, N.Y.). 330 [PubMed]
Avants BW, Murphy DB, Dapello JA, Robinson JT. (2015). NeuroPG: open source software for optical pattern generation and data acquisition. Frontiers in neuroengineering. 8 [PubMed]
Ayling OG, Harrison TC, Boyd JD, Goroshkov A, Murphy TH. (2009). Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice. Nature methods. 6 [PubMed]
AzimiHashemi N et al. (2014). Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools. Nature communications. 5 [PubMed]
Bamann C, Kirsch T, Nagel G, Bamberg E. (2008). Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function. Journal of molecular biology. 375 [PubMed]
Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K. (2009). Bi-stable neural state switches. Nature neuroscience. 12 [PubMed]
Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nature neuroscience. 8 [PubMed]
Boyle PM, Williams JC, Ambrosi CM, Entcheva E, Trayanova NA. (2013). A comprehensive multiscale framework for simulating optogenetics in the heart. Nature communications. 4 [PubMed]
Bruegmann T, Sasse P. (2015). Optogenetic cardiac pacemakers: science or fiction? Trends in cardiovascular medicine. 25 [PubMed]
Busskamp V, Roska B. (2011). Optogenetic approaches to restoring visual function in retinitis pigmentosa. Current opinion in neurobiology. 21 [PubMed]
Chow BY et al. (2010). High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature. 463 [PubMed]
Chuong AS et al. (2014). Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nature neuroscience. 17 [PubMed]
Davison AP et al. (2008). PyNN: A Common Interface for Neuronal Network Simulators. Frontiers in neuroinformatics. 2 [PubMed]
De Schutter E et al. (2011). NineML: declarative, mathematically-explicit descriptions of spiking neuronal networks Front. Neuroinform. Conference Abstract: 4th INCF Congress of Neuroinformatics.
Degenaar P et al. (2009). Optobionic vision--a new genetically enhanced light on retinal prosthesis. Journal of neural engineering. 6 [PubMed]
Eppler JM, Helias M, Muller E, Diesmann M, Gewaltig MO. (2008). PyNEST: A Convenient Interface to the NEST Simulator. Frontiers in neuroinformatics. 2 [PubMed]
Ernst OP et al. (2008). Photoactivation of channelrhodopsin. The Journal of biological chemistry. 283 [PubMed]
Et AL et al. (2008). Channelrhodopsins: Molecular Properties and Applications Washington, DC: Society for Neuroscience.
Feldbauer K et al. (2009). Channelrhodopsin-2 is a leaky proton pump. Proceedings of the National Academy of Sciences of the United States of America. 106 [PubMed]
Foutz TJ, Arlow RL, McIntyre CC. (2012). Theoretical principles underlying optical stimulation of a channelrhodopsin-2 positive pyramidal neuron. Journal of neurophysiology. 107 [PubMed]
Gleeson P et al. (2010). NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS computational biology. 6 [PubMed]
Goodman D, Brette R. (2008). Brian: a simulator for spiking neural networks in python. Frontiers in neuroinformatics. 2 [PubMed]
Goodman DF, Brette R. (2009). The brian simulator. Frontiers in neuroscience. 3 [PubMed]
Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. (2009). Optical deconstruction of parkinsonian neural circuitry. Science (New York, N.Y.). 324 [PubMed]
Gradinaru V et al. (2007). Targeting and readout strategies for fast optical neural control in vitro and in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]
Gradmann D, Berndt A, Schneider F, Hegemann P. (2011). Rectification of the channelrhodopsin early conductance. Biophysical journal. 101 [PubMed]
Gradmann D, Ehlenbeck S, Hegemann P. (2002). Modeling light-induced currents in the eye of Chlamydomonas reinhardtii. The Journal of membrane biology. 189 [PubMed]
Granger BE, Pérez F. (2007). IPython: A System for Interactive Scientific Computing Computing in Science & Engineering. 9
Grossman N, Nikolic K, Toumazou C, Degenaar P. (2011). Modeling study of the light stimulation of a neuron cell with channelrhodopsin-2 mutants. IEEE transactions on bio-medical engineering. 58 [PubMed]
Grossman N et al. (2013). The spatial pattern of light determines the kinetics and modulates backpropagation of optogenetic action potentials. Journal of computational neuroscience. 34 [PubMed]
Gunaydin LA et al. (2010). Ultrafast optogenetic control. Nature neuroscience. 13 [PubMed]
Han X, Boyden ES. (2007). Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PloS one. 2 [PubMed]
Hegemann P, Ehlenbeck S, Gradmann D. (2005). Multiple photocycles of channelrhodopsin. Biophysical journal. 89 [PubMed]
Hegemann P, Möglich A. (2011). Channelrhodopsin engineering and exploration of new optogenetic tools. Nature methods. 8 [PubMed]
Hernandez VH et al. (2014). Optogenetic stimulation of the auditory pathway. The Journal of clinical investigation. 124 [PubMed]
Hines ML, Carnevale NT. (2000). Expanding NEURON's repertoire of mechanisms with NMODL. Neural computation. 12 [PubMed]
Hines ML, Davison AP, Muller E. (2009). NEURON and Python. Frontiers in neuroinformatics. 3 [PubMed]
Ishizuka T, Kakuda M, Araki R, Yawo H. (2006). Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neuroscience research. 54 [PubMed]
Klapoetke NC et al. (2014). Independent optical excitation of distinct neural populations. Nature methods. 11 [PubMed]
Konermann S et al. (2013). Optical control of mammalian endogenous transcription and epigenetic states. Nature. 500 [PubMed]
Kuhne J et al. (2015). Early formation of the ion-conducting pore in channelrhodopsin-2. Angewandte Chemie (International ed. in English). 54 [PubMed]
Lagali PS et al. (2008). Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nature neuroscience. 11 [PubMed]
Lin JY. (2011). A user's guide to channelrhodopsin variants: features, limitations and future developments. Experimental physiology. 96 [PubMed]
Lin JY, Lin MZ, Steinbach P, Tsien RY. (2009). Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophysical journal. 96 [PubMed]
Liu Y et al. (2015). OptogenSIM: a 3D Monte Carlo simulation platform for light delivery design in optogenetics. Biomedical optics express. 6 [PubMed]
Muller E et al. (2015). Python in neuroscience. Frontiers in neuroinformatics. 9 [PubMed]
Nagel G et al. (2003). Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences of the United States of America. 100 [PubMed]
Newville M, Stensitzki T, Allen DB, Ingargiola A. (2014). LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python Zenodo.
Nikolic K et al. (2009). Photocycles of channelrhodopsin-2. Photochemistry and photobiology. 85 [PubMed]
Nikolic K et al. (2007). A non-invasive retinal prosthesis - testing the concept. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference. 2007 [PubMed]
Petreanu L, Mao T, Sternson SM, Svoboda K. (2009). The subcellular organization of neocortical excitatory connections. Nature. 457 [PubMed]
Shoham S, Deisseroth K. (2010). Special issue on optical neural engineering: advances in optical stimulation technology. Journal of neural engineering. 7 [PubMed]
Stehfest K, Hegemann P. (2010). Evolution of the channelrhodopsin photocycle model. Chemphyschem : a European journal of chemical physics and physical chemistry. 11 [PubMed]
Topalidou M, Leblois A, Boraud T, Rougier NP. (2015). A long journey into reproducible computational neuroscience. Frontiers in computational neuroscience. 9 [PubMed]
Wang H et al. (2007). High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proceedings of the National Academy of Sciences of the United States of America. 104 [PubMed]
Williams JC et al. (2013). Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 model. PLoS computational biology. 9 [PubMed]
Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K. (2011). Optogenetics in neural systems. Neuron. 71 [PubMed]
Zhang F et al. (2011). The microbial opsin family of optogenetic tools. Cell. 147 [PubMed]
Zhang F, Wang LP, Boyden ES, Deisseroth K. (2006). Channelrhodopsin-2 and optical control of excitable cells. Nature methods. 3 [PubMed]
Zhang F et al. (2007). Multimodal fast optical interrogation of neural circuitry. Nature. 446 [PubMed]