Nambu A, Llinaś R. (1994). Electrophysiology of globus pallidus neurons in vitro. Journal of neurophysiology. 72 [PubMed]

See more from authors: Nambu A · Llinaś R

References and models cited by this paper
References and models that cite this paper

Bogacz R, Gurney K. (2007). The basal ganglia and cortex implement optimal decision making between alternative actions. Neural computation. 19 [PubMed]

Chan CS, Shigemoto R, Mercer JN, Surmeier DJ. (2004). HCN2 and HCN1 channels govern the regularity of autonomous pacemaking and synaptic resetting in globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

Fujita T, Fukai T, Kitano K. (2012). Influences of membrane properties on phase response curve and synchronization stability in a model globus pallidus neuron. Journal of computational neuroscience. 32 [PubMed]

Gillies A, Willshaw D. (2004). Models of the subthalamic nucleus. The importance of intranuclear connectivity. Medical engineering & physics. 26 [PubMed]

Günay C, Edgerton JR, Jaeger D. (2008). Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

Hadipour-Niktarash A. (2006). A computational model of how an interaction between the thalamocortical and thalamic reticular neurons transforms the low-frequency oscillations of the globus pallidus. Journal of computational neuroscience. 20 [PubMed]

Hahn PJ, McIntyre CC. (2010). Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation. Journal of computational neuroscience. 28 [PubMed]

Humphries MD, Stewart RD, Gurney KN. (2006). A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Kopp-Scheinpflug C et al. (2011). The sound of silence: ionic mechanisms encoding sound termination. Neuron. 71 [PubMed]

Liénard J, Girard B. (2014). A biologically constrained model of the whole basal ganglia addressing the paradoxes of connections and selection. Journal of computational neuroscience. 36 [PubMed]

McRory JE et al. (2001). Molecular and functional characterization of a family of rat brain T-type calcium channels. The Journal of biological chemistry. 276 [PubMed]

Mercer JN, Chan CS, Tkatch T, Held J, Surmeier DJ. (2007). Nav1.6 sodium channels are critical to pacemaking and fast spiking in globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Pascual A, Modolo J, Beuter A. (2006). Is a computational model useful to understand the effect of deep brain stimulation in Parkinson's disease? Journal of integrative neuroscience. 5 [PubMed]

Rubchinsky LL, Kopell N, Sigvardt KA. (2003). Modeling facilitation and inhibition of competing motor programs in basal ganglia subthalamic nucleus-pallidal circuits. Proceedings of the National Academy of Sciences of the United States of America. 100 [PubMed]

So RQ, Kent AR, Grill WM. (2012). Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: a computational modeling study. Journal of computational neuroscience. 32 [PubMed]

Terman D, Rubin JE, Yew AC, Wilson CJ. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]

Wetmore DZ, Mukamel EA, Schnitzer MJ. (2008). Lock-and-key mechanisms of cerebellar memory recall based on rebound currents. Journal of neurophysiology. 100 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.