Kopell N, Ermentrout GB, Whittington MA, Traub RD. (2000). Gamma rhythms and beta rhythms have different synchronization properties. Proceedings of the National Academy of Sciences of the United States of America. 97 [PubMed]

See more from authors: Kopell N · Ermentrout GB · Whittington MA · Traub RD

References and models cited by this paper
References and models that cite this paper

Acker CD, Kopell N, White JA. (2003). Synchronization of strongly coupled excitatory neurons: relating network behavior to biophysics. Journal of computational neuroscience. 15 [PubMed]

Avella Gonzalez OJ, van Aerde KI, Mansvelder HD, van Pelt J, van Ooyen A. (2014). Inter-network interactions: impact of connections between oscillatory neuronal networks on oscillation frequency and pattern. PloS one. 9 [PubMed]

Bibbig A et al. (2007). Beta rhythms (15-20 Hz) generated by nonreciprocal communication in hippocampus. Journal of neurophysiology. 97 [PubMed]

Chehelcheraghi M, van Leeuwen C, Steur E, Nakatani C. (2017). A neural mass model of cross frequency coupling. PloS one. 12 [PubMed]

Jones SR, Pinto DJ, Kaper TJ, Kopell N. (2000). Alpha-frequency rhythms desynchronize over long cortical distances: a modeling study. Journal of computational neuroscience. 9 [PubMed]

Jones SR et al. (2009). Quantitative analysis and biophysically realistic neural modeling of the MEG mu rhythm: rhythmogenesis and modulation of sensory-evoked responses. Journal of neurophysiology. 102 [PubMed]

Kim S, Singer BH, Zochowski M. (2006). Changing roles for temporal representation of odorant during the oscillatory response of the olfactory bulb. Neural computation. 18 [PubMed]

Kuznetsova AY, Deth RC. (2008). A model for modulation of neuronal synchronization by D4 dopamine receptor-mediated phospholipid methylation. Journal of computational neuroscience. 24 [PubMed]

Li YX, Wang YQ, Miura R. (2003). Clustering in small networks of excitatory neurons with heterogeneous coupling strengths. Journal of computational neuroscience. 14 [PubMed]

Maex R, De Schutter E. (2003). Resonant synchronization in heterogeneous networks of inhibitory neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Morse TM. (2008). ModelDB in computational neuroscience education - a research tool as interactive educational media. Brains, minds & media : journal of new media in neural and cognitive science and education. 3 [PubMed]

Neymotin SA, Lee H, Park E, Fenton AA, Lytton WW. (2011). Emergence of physiological oscillation frequencies in a computer model of neocortex. Frontiers in computational neuroscience. 5 [PubMed]

Oh M, Matveev V. (2009). Loss of phase-locking in non-weakly coupled inhibitory networks of type-I model neurons. Journal of computational neuroscience. 26 [PubMed]

Olufsen MS, Whittington MA, Camperi M, Kopell N. (2003). New roles for the gamma rhythm: population tuning and preprocessing for the Beta rhythm. Journal of computational neuroscience. 14 [PubMed]

Pervouchine DD et al. (2006). Low-dimensional maps encoding dynamics in entorhinal cortex and hippocampus. Neural computation. 18 [PubMed]

Pinto DJ, Jones SR, Kaper TJ, Kopell N. (2003). Analysis of State-Dependent Transitions in Frequency and Long-Distance Coordination in a Model Oscillatory Cortical Circuit Journal of computational neuroscience. 15 [PubMed]

Pouille F, McTavish TS, Hunter LE, Restrepo D, Schoppa NE. (2017). Intraglomerular gap junctions enhance interglomerular synchrony in a sparsely connected olfactory bulb network. The Journal of physiology. 595 [PubMed]

Ramirez-Mahaluf JP, Roxin A, Mayberg HS, Compte A. (2017). A Computational Model of Major Depression: the Role of Glutamate Dysfunction on Cingulo-Frontal Network Dynamics. Cerebral cortex (New York, N.Y. : 1991). 27 [PubMed]

Sherfey JS et al. (2018). DynaSim: A MATLAB Toolbox for Neural Modeling and Simulation. Frontiers in neuroinformatics. 12 [PubMed]

Tiesinga PH, Sejnowski TJ. (2004). Rapid temporal modulation of synchrony by competition in cortical interneuron networks. Neural computation. 16 [PubMed]

Yoshioka M. (2002). Spike-timing-dependent learning rule to encode spatiotemporal patterns in a network of spiking neurons. Physical review. E, Statistical, nonlinear, and soft matter physics. 65 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.