Kistler WM, van Hemmen JL, Gerstner W. (1997). Reduction of Hodgkin-Huxley equations to a single-variable threshold model. Neural Comput. 9

See more from authors: Kistler WM · van Hemmen JL · Gerstner W

References and models cited by this paper
References and models that cite this paper

Acker CD, Kopell N, White JA. (2003). Synchronization of strongly coupled excitatory neurons: relating network behavior to biophysics. Journal of computational neuroscience. 15 [PubMed]

Badel L et al. (2008). Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. Journal of neurophysiology. 99 [PubMed]

Brette R, Gerstner W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of neurophysiology. 94 [PubMed]

Bruce IC, Irlicht LS, White MW, O'Leary SJ, Clark GM. (2000). Renewal-process approximation of a stochastic threshold model for electrical neural stimulation. Journal of computational neuroscience. 9 [PubMed]

Bruce IC et al. (1999). A stochastic model of the electrically stimulated auditory nerve: single-pulse response. IEEE transactions on bio-medical engineering. 46 [PubMed]

Eggert J, van Hemmen JL. (2001). Modeling neuronal assemblies: theory and implementation. Neural computation. 13 [PubMed]

Gerstner W, Kistler WM. (2002). Mathematical formulations of Hebbian learning. Biological cybernetics. 87 [PubMed]

Herrmann A, Gerstner W. (2001). Noise and the PSTH response to current transients: I. General theory and application to the integrate-and-fire neuron. Journal of computational neuroscience. 11 [PubMed]

Herrmann A, Gerstner W. (2002). Noise and the PSTH response to current transients: II. Integrate-and-fire model with slow recovery and application to motoneuron data. Journal of computational neuroscience. 12 [PubMed]

Hong S, Agüera y Arcas B, Fairhall AL. (2007). Single neuron computation: from dynamical system to feature detector. Neural computation. 19 [PubMed]

Jolivet R, Gerstner W. (2004). Predicting spike times of a detailed conductance-based neuron model driven by stochastic spike arrival. Journal of physiology, Paris. 98 [PubMed]

Jolivet R et al. (2008). A benchmark test for a quantitative assessment of simple neuron models. Journal of neuroscience methods. 169 [PubMed]

Jolivet R, Lewis TJ, Gerstner W. (2004). Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. Journal of neurophysiology. 92 [PubMed]

Jolivet R, Rauch A, Lüscher HR, Gerstner W. (2006). Predicting spike timing of neocortical pyramidal neurons by simple threshold models. Journal of computational neuroscience. 21 [PubMed]

Jones A, Singh N, Huyck CR, Gandhi V. (2016). Neuron-Based Control Mechanisms for a Robotic Arm and Hand ICMRRS 2017: International Conference on Medical Robotics and Robotics for Surgery, Paris, France. 3(2)

Kistler WM, De Zeeuw CI. (2003). Time windows and reverberating loops: a reverse-engineering approach to cerebellar function. Cerebellum (London, England). 2 [PubMed]

Kopell N, Rotstein HG, Clewley R. (2005). A Computational Tool for the Reduction of Nonlinear ODE Systems Possessing Multiple Scales Multiscale modeling & simulation. 4(3)

Lansky P, Sanda P, He J. (2006). The parameters of the stochastic leaky integrate-and-fire neuronal model. Journal of computational neuroscience. 21 [PubMed]

McTavish TS, Migliore M, Shepherd GM, Hines ML. (2012). Mitral cell spike synchrony modulated by dendrodendritic synapse location. Frontiers in computational neuroscience. 6 [PubMed]

Olypher AV, Lánský P, Fenton AA. (2002). Properties of the extra-positional signal in hippocampal place cell discharge derived from the overdispersion in location-specific firing. Neuroscience. 111 [PubMed]

Powers RK, Dai Y, Bell BM, Percival DB, Binder MD. (2005). Contributions of the input signal and prior activation history to the discharge behaviour of rat motoneurones. The Journal of physiology. 562 [PubMed]

Tonnelier A. (2005). Categorization of neural excitability using threshold models. Neural computation. 17 [PubMed]

Zeldenrust F, Chameau P, Wadman WJ. (2018). Spike and burst coding in thalamocortical relay cells. PLoS computational biology. 14 [PubMed]

Zeldenrust F, Chameau PJ, Wadman WJ. (2013). Reliability of spike and burst firing in thalamocortical relay cells. Journal of computational neuroscience. 35 [PubMed]

Zhang X, Carney LH. (2005). Response properties of an integrate-and-fire model that receives subthreshold inputs. Neural computation. 17 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.