Maccaferri G, McBain CJ. (1996). The hyperpolarization-activated current (Ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens-alveus interneurones. The Journal of physiology. 497 ( Pt 1) [PubMed]

See more from authors: Maccaferri G · McBain CJ

References and models cited by this paper
References and models that cite this paper

Anderson WD, Galván EJ, Mauna JC, Thiels E, Barrionuevo G. (2011). Properties and functional implications of I (h) in hippocampal area CA3 interneurons. Pflugers Archiv : European journal of physiology. 462 [PubMed]

Bal R, Oertel D. (2000). Hyperpolarization-activated, mixed-cation current (I(h)) in octopus cells of the mammalian cochlear nucleus. Journal of neurophysiology. 84 [PubMed]

Bibbig A et al. (2007). Beta rhythms (15-20 Hz) generated by nonreciprocal communication in hippocampus. Journal of neurophysiology. 97 [PubMed]

Ceballos CC, Li S, Roque AC, Tzounopoulos T, Leão RM. (2016). Ih Equalizes Membrane Input Resistance in a Heterogeneous Population of Fusiform Neurons in the Dorsal Cochlear Nucleus. Frontiers in cellular neuroscience. 10 [PubMed]

Chan CS, Shigemoto R, Mercer JN, Surmeier DJ. (2004). HCN2 and HCN1 channels govern the regularity of autonomous pacemaking and synaptic resetting in globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

Chen K et al. (2001). Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nature medicine. 7 [PubMed]

Chitwood RA, Hubbard A, Jaffe DB. (1999). Passive electrotonic properties of rat hippocampal CA3 interneurones. The Journal of physiology. 515 ( Pt 3) [PubMed]

Ermentrout GB, Terman DH. (2010). Mathematical Foundations of Neuroscience Interdisciplinary Applied Mathematics. 35

Ferguson KA et al. (2015). Network models provide insights into how oriens-lacunosum-moleculare and bistratified cell interactions influence the power of local hippocampal CA1 theta oscillations. Frontiers in systems neuroscience. 9 [PubMed]

Golomb D, Yue C, Yaari Y. (2006). Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study. Journal of neurophysiology. 96 [PubMed]

Gorin M et al. (2016). Interdependent Conductances Drive Infraslow Intrinsic Rhythmogenesis in a Subset of Accessory Olfactory Bulb Projection Neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 36 [PubMed]

Hajós M, Hoffmann WE, Orbán G, Kiss T, Erdi P. (2004). Modulation of septo-hippocampal Theta activity by GABAA receptors: an experimental and computational approach. Neuroscience. 126 [PubMed]

Hemond P, Migliore M, Ascoli GA, Jaffe DB. (2009). The membrane response of hippocampal CA3b pyramidal neurons near rest: Heterogeneity of passive properties and the contribution of hyperpolarization-activated currents. Neuroscience. 160 [PubMed]

Hight AE, Kalluri R. (2016). A biophysical model examining the role of low-voltage-activated potassium currents in shaping the responses of vestibular ganglion neurons. Journal of neurophysiology. 116 [PubMed]

Howard AL, Neu A, Morgan RJ, Echegoyen JC, Soltesz I. (2007). Opposing modifications in intrinsic currents and synaptic inputs in post-traumatic mossy cells: evidence for single-cell homeostasis in a hyperexcitable network. Journal of neurophysiology. 97 [PubMed]

Häusser M, Clark BA. (1997). Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron. 19 [PubMed]

Lawrence JJ et al. (2006). Somatodendritic Kv7/KCNQ/M channels control interspike interval in hippocampal interneurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Lien CC, Martina M, Schultz JH, Ehmke H, Jonas P. (2002). Gating, modulation and subunit composition of voltage-gated K(+) channels in dendritic inhibitory interneurones of rat hippocampus. The Journal of physiology. 538 [PubMed]

Meuth SG et al. (2006). Membrane resting potential of thalamocortical relay neurons is shaped by the interaction among TASK3 and HCN2 channels. Journal of neurophysiology. 96 [PubMed]

Minneci F et al. (2007). Signaling properties of stratum oriens interneurons in the hippocampus of transgenic mice expressing EGFP in a subset of somatostatin-containing cells. Hippocampus. 17 [PubMed]

Mäki-Marttunen T, Mäki-Marttunen V. (2022). Excitatory and inhibitory effects of HCN channel modulation on excitability of layer V pyramidal cells PLoS computational biology. 18 [PubMed]

Pervouchine DD et al. (2006). Low-dimensional maps encoding dynamics in entorhinal cortex and hippocampus. Neural computation. 18 [PubMed]

Rotstein HG et al. (2005). Slow and fast inhibition and an H-current interact to create a theta rhythm in a model of CA1 interneuron network. Journal of neurophysiology. 94 [PubMed]

Saraga F, Wu CP, Zhang L, Skinner FK. (2003). Active dendrites and spike propagation in multi-compartment models of oriens-lacunosum/moleculare hippocampal interneurons. The Journal of physiology. 552 [PubMed]

Sekulić V, Chen TC, Lawrence JJ, Skinner FK. (2015). Dendritic distributions of I h channels in experimentally-derived multi-compartment models of oriens-lacunosum/moleculare (O-LM) hippocampal interneurons. Frontiers in synaptic neuroscience. 7 [PubMed]

Skinner FK, Saraga F. (2003). Spike initiation in a hippocampal interneuron model Neurocomputing. 52-4

Sun Z, Crompton D, Lankarany M, Skinner FK. (2023). Reduced oriens-lacunosum/moleculare cell model identifies biophysical current balances for in vivo theta frequency spiking resonance Frontiers in Neural Circuits. [PubMed]

Tort AB, Rotstein HG, Dugladze T, Gloveli T, Kopell NJ. (2007). On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America. 104 [PubMed]

Williams SR, Christensen SR, Stuart GJ, Häusser M. (2002). Membrane potential bistability is controlled by the hyperpolarization-activated current I(H) in rat cerebellar Purkinje neurons in vitro. The Journal of physiology. 539 [PubMed]

Zhu JJ, Uhlrich DJ, Lytton WW. (1999). Properties of a hyperpolarization-activated cation current in interneurons in the rat lateral geniculate nucleus. Neuroscience. 92 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.