Models analysis for auditory-nerve synapse (Zhang and Carney 2005)


Zhang X, Carney LH. (2005). Analysis of models for the synapse between the inner hair cell and the auditory nerve. The Journal of the Acoustical Society of America. 118 [PubMed]

See more from authors: Zhang X · Carney LH

References and models cited by this paper

Carney LH. (1993). A model for the responses of low-frequency auditory-nerve fibers in cat. The Journal of the Acoustical Society of America. 93 [PubMed]

Carney LH, Zhang X, Heinz MG, Bruce IC. (2001). Auditory nerve model for predicting performance limits of normal and impaired listeners. Acoustics Research Letters Online. 2(3)

Cheatham MA, Dallos P. (1993). Longitudinal comparisons of IHC ac and dc receptor potentials recorded from the guinea pig cochlea. Hearing research. 68 [PubMed]

Furukawa T, Matsuura S. (1978). Adaptive rundown of excitatory post-synaptic potentials at synapses between hair cells and eight nerve fibres in the goldfish. The Journal of physiology. 276 [PubMed]

Harris DM, Dallos P. (1979). Forward masking of auditory nerve fiber responses. Journal of neurophysiology. 42 [PubMed]

Hewitt MJ, Meddis R. (1991). An evaluation of eight computer models of mammalian inner hair-cell function. The Journal of the Acoustical Society of America. 90 [PubMed]

Hewitt MJ, Meddis R, Shackleton TM. (1990). Implementation details of a computation model of the inner-hair cell-auditory-nerve synapse J Acoust Soc Am. 87

Joris PX, Yin TC. (1992). Responses to amplitude-modulated tones in the auditory nerve of the cat. The Journal of the Acoustical Society of America. 91 [PubMed]

Meddis R. (1986). Simulation of mechanical to neural transduction in the auditory receptor. The Journal of the Acoustical Society of America. 79 [PubMed]

Meddis R. (1988). Simulation of auditory-neural transduction: further studies. The Journal of the Acoustical Society of America. 83 [PubMed]

Moser T, Beutner D. (2000). Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. Proceedings of the National Academy of Sciences of the United States of America. 97 [PubMed]

Nelson PC, Carney LH. (2004). A phenomenological model of peripheral and central neural responses to amplitude-modulated tones. The Journal of the Acoustical Society of America. 116 [PubMed]

Raman IM, Zhang S, Trussell LO. (1994). Pathway-specific variants of AMPA receptors and their contribution to neuronal signaling. The Journal of neuroscience : the official journal of the Society for Neuroscience. 14 [PubMed]

Relkin EM, Doucet JR. (1991). Recovery from prior stimulation. I: Relationship to spontaneous firing rates of primary auditory neurons. Hearing research. 55 [PubMed]

Rhode WS, Smith PH. (1985). Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers. Hearing research. 18 [PubMed]

Ross S. (1996). A functional model of the hair cell-primary fiber complex. The Journal of the Acoustical Society of America. 99 [PubMed]

Russell IJ, Sellick PM. (1978). Intracellular studies of hair cells in the mammalian cochlea. The Journal of physiology. 284 [PubMed]

Schwid HA, Geisler CD. (1982). Multiple reservoir model of neurotransmitter release by a cochlear inner hair cell. The Journal of the Acoustical Society of America. 72 [PubMed]

Smith RL. (1977). Short-term adaptation in single auditory nerve fibers: some poststimulatory effects. Journal of neurophysiology. 40 [PubMed]

Smith RL, Brachman ML. (1982). Adaptation in auditory-nerve fibers: a revised model. Biological cybernetics. 44 [PubMed]

Smith RL, Brachman ML, Frisina RD. (1985). Sensitivity of auditory-nerve fibers to changes in intensity: a dichotomy between decrements and increments. The Journal of the Acoustical Society of America. 78 [PubMed]

Smith RL, Zwislocki JJ. (1975). Short-term adaptation and incremental responses of single auditory-nerve fibers. Biological cybernetics. 17 [PubMed]

Sumner CJ, Lopez-Poveda EA, O'Mard LP, Meddis R. (2002). A revised model of the inner-hair cell and auditory-nerve complex. The Journal of the Acoustical Society of America. 111 [PubMed]

Sumner CJ, Lopez-Poveda EA, O'Mard LP, Meddis R. (2003). Adaptation in a revised inner-hair cell model. The Journal of the Acoustical Society of America. 113 [PubMed]

Westerman LA. (1985). Adaptation and recovery of auditory nerve responses.

Westerman LA, Smith RL. (1984). Rapid and short-term adaptation in auditory nerve responses. Hearing research. 15 [PubMed]

Westerman LA, Smith RL. (1988). A diffusion model of the transient response of the cochlear inner hair cell synapse. The Journal of the Acoustical Society of America. 83 [PubMed]

Zeddies DG, Siegel JH. (2004). A biophysical model of an inner hair cell. The Journal of the Acoustical Society of America. 116 [PubMed]

Zhang X, Heinz MG, Bruce IC, Carney LH. (2001). A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. The Journal of the Acoustical Society of America. 109 [PubMed]

References and models that cite this paper

Altoè A, Pulkki V, Verhulst S. (2018). The effects of the activation of the inner-hair-cell basolateral K+ channels on auditory nerve responses. Hearing research. 364 [PubMed]

Verhulst S, Altoè A, Vasilkov V. (2018). Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss. Hearing research. 360 [PubMed]

Zilany MS, Bruce IC, Nelson PC, Carney LH. (2009). A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. The Journal of the Acoustical Society of America. 126 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.