Olfactory Mitral Cell (Davison et al 2000)


Davison AP, Feng J, Brown D. (2000). A reduced compartmental model of the mitral cell for use in network models of the olfactory bulb. Brain research bulletin. 51 [PubMed]

See more from authors: Davison AP · Feng J · Brown D

References and models cited by this paper

Bhalla US, Bower JM. (1993). Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb. Journal of neurophysiology. 69 [PubMed]

Bhalla US, Bower JM. (1997). Multiday recordings from olfactory bulb neurons in awake freely moving rats: spatially and temporally organized variability in odorant response properties. Journal of computational neuroscience. 4 [PubMed]

Bush PC, Sejnowski TJ. (1993). Reduced compartmental models of neocortical pyramidal cells. Journal of neuroscience methods. 46 [PubMed]

Chen WR, Midtgaard J, Shepherd GM. (1997). Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. Science (New York, N.Y.). 278 [PubMed]

Chen WR, Shepherd GM. (1997). Membrane and synaptic properties of mitral cells in slices of rat olfactory bulb. Brain research. 745 [PubMed]

HODGKIN AL, HUXLEY AF. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology. 117 [PubMed]

Harrison TA, Scott JW. (1986). Olfactory bulb responses to odor stimulation: analysis of response pattern and intensity relationships. Journal of neurophysiology. 56 [PubMed]

Major G, Larkman AU, Stratford KJ, Mason AJR, Jack JJB. (1989). The modelling of pyramidal neurones in the visual cortex The Computing Neuron.

Marder E. (1998). From biophysics to models of network function. Annual review of neuroscience. 21 [PubMed]

Motokizawa F, Ogawa Y. (1997). Discharge properties of mitral/tufted cells in the olfactory bulb of cats. Brain research. 763 [PubMed]

Nickell WT, Shipley MT, Behbehani MM. (1996). Orthodromic synaptic activation of rat olfactory bulb mitral cells in isolated slices. Brain research bulletin. 39 [PubMed]

Pinsky PF, Rinzel J. (1994). Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. Journal of computational neuroscience. 1 [PubMed]

Press WH, Teukolsky SA, Vetterling WT, Flannery BP. (1986). Numerical Recipes The Art Of Scientic Computing.

RALL W. (1959). Branching dendritic trees and motoneuron membrane resistivity. Experimental neurology. 1 [PubMed]

Royet JP, Distel H, Hudson R, Gervais R. (1998). A re-estimation of the number of glomeruli and mitral cells in the olfactory bulb of rabbit. Brain research. 788 [PubMed]

Traub RD, Wong RK, Miles R, Michelson H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of neurophysiology. 66 [PubMed]

Vanier MC, Bower JM. (1999). A comparative survey of automated parameter-search methods for compartmental neural models. Journal of computational neuroscience. 7 [PubMed]

References and models that cite this paper

Alturki A, Feng F, Nair A, Guntu V, Nair SS. (2016). Distinct current modules shape cellular dynamics in model neurons. Neuroscience. 334 [PubMed]

Bathellier B, Lagier S, Faure P, Lledo PM. (2006). Circuit properties generating gamma oscillations in a network model of the olfactory bulb. Journal of neurophysiology. 95 [PubMed]

Carnevale NT, Hines M. (2003). Personal Communication of NEURON bibliography .

Carnevale NT, Morse TM. (1996). Research reports that have used NEURON Web published citations at the NEURON website.

David F, Linster C, Cleland TA. (2008). Lateral dendritic shunt inhibition can regularize mitral cell spike patterning. Journal of computational neuroscience. 25 [PubMed]

Davison A. (2004). Biologically-detailed network modelling (Chapter 10) Computation Neuroscience: A Comprehensive Approach.

Davison AP, Feng J, Brown D. (2003). Dendrodendritic inhibition and simulated odor responses in a detailed olfactory bulb network model. Journal of neurophysiology. 90 [PubMed]

Hendrickson EB, Edgerton JR, Jaeger D. (2011). The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites. Journal of computational neuroscience. 30 [PubMed]

Hendrickson EB, Edgerton JR, Jaeger D. (2011). The use of automated parameter searches to improve ion channel kinetics for neural modeling. Journal of computational neuroscience. 31 [PubMed]

Li G, Cleland TA. (2013). A two-layer biophysical model of cholinergic neuromodulation in olfactory bulb. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]

Marasco A, Limongiello A, Migliore M. (2013). Using Strahler's analysis to reduce up to 200-fold the run time of realistic neuron models. Scientific reports. 3 [PubMed]

Pouille F, McTavish TS, Hunter LE, Restrepo D, Schoppa NE. (2017). Intraglomerular gap junctions enhance interglomerular synchrony in a sparsely connected olfactory bulb network. The Journal of physiology. 595 [PubMed]

Rubin DB, Cleland TA. (2006). Dynamical mechanisms of odor processing in olfactory bulb mitral cells. Journal of neurophysiology. 96 [PubMed]

Tobin AE, Van Hooser SD, Calabrese RL. (2006). Creation and reduction of a morphologically detailed model of a leech heart interneuron. Journal of neurophysiology. 96 [PubMed]

Weaver CM, Wearne SL. (2006). The role of action potential shape and parameter constraints in optimization of compartment models Neurocomputing. 69

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.