David F, Linster C, Cleland TA. (2008). Lateral dendritic shunt inhibition can regularize mitral cell spike patterning. Journal of computational neuroscience. 25 [PubMed]

See more from authors: David F · Linster C · Cleland TA

References and models cited by this paper

Antón PS, Granger R, Lynch G. (1993). Simulated dendritic spines influence reciprocal synaptic strengths and lateral inhibition in the olfactory bulb. Brain research. 628 [PubMed]

Aungst JL et al. (2003). Centre-surround inhibition among olfactory bulb glomeruli. Nature. 426 [PubMed]

Balu R, Pressler RT, Strowbridge BW. (2007). Multiple modes of synaptic excitation of olfactory bulb granule cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Bathellier B, Lagier S, Faure P, Lledo PM. (2006). Circuit properties generating gamma oscillations in a network model of the olfactory bulb. Journal of neurophysiology. 95 [PubMed]

Bhalla US, Bower JM. (1993). Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb. Journal of neurophysiology. 69 [PubMed]

Brody CD, Hopfield JJ. (2003). Simple networks for spike-timing-based computation, with application to olfactory processing. Neuron. 37 [PubMed]

Cang J, Isaacson JS. (2003). In vivo whole-cell recording of odor-evoked synaptic transmission in the rat olfactory bulb. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Chen WR, Shen GY, Shepherd GM, Hines ML, Midtgaard J. (2002). Multiple modes of action potential initiation and propagation in mitral cell primary dendrite. Journal of neurophysiology. 88 [PubMed]

Cleland TA, Linster C. (2002). How synchronization properties among second-order sensory neurons can mediate stimulus salience. Behavioral neuroscience. 116 [PubMed]

Cleland TA, Linster C. (2005). Computation in the olfactory system. Chemical senses. 30 [PubMed]

Cleland TA, Sethupathy P. (2006). Non-topographical contrast enhancement in the olfactory bulb. BMC neuroscience. 7 [PubMed]

Davison AP, Feng J, Brown D. (2000). A reduced compartmental model of the mitral cell for use in network models of the olfactory bulb. Brain research bulletin. 51 [PubMed]

Davison AP, Feng J, Brown D. (2003). Dendrodendritic inhibition and simulated odor responses in a detailed olfactory bulb network model. Journal of neurophysiology. 90 [PubMed]

Debarbieux F, Audinat E, Charpak S. (2003). Action potential propagation in dendrites of rat mitral cells in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Desmaisons D, Vincent JD, Lledo PM. (1999). Control of action potential timing by intrinsic subthreshold oscillations in olfactory bulb output neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Eeckman FH, Freeman WJ. (1990). Correlations between unit firing and EEG in the rat olfactory system. Brain research. 528 [PubMed]

Egger V, Svoboda K, Mainen ZF. (2003). Mechanisms of lateral inhibition in the olfactory bulb: efficiency and modulation of spike-evoked calcium influx into granule cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Egger V, Svoboda K, Mainen ZF. (2005). Dendrodendritic synaptic signals in olfactory bulb granule cells: local spine boost and global low-threshold spike. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Galán RF, Ermentrout GB, Urban NN. (2005). Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling. Physical review letters. 94 [PubMed]

Galán RF, Fourcaud-Trocmé N, Ermentrout GB, Urban NN. (2006). Correlation-induced synchronization of oscillations in olfactory bulb neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Jahr CE, Nicoll RA. (1982). An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb. The Journal of physiology. 326 [PubMed]

Lagier S, Carleton A, Lledo PM. (2004). Interplay between local GABAergic interneurons and relay neurons generates gamma oscillations in the rat olfactory bulb. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

Laurent G. (2002). Olfactory network dynamics and the coding of multidimensional signals. Nature reviews. Neuroscience. 3 [PubMed]

Lestienne R, Tuckwell HC, Chalansonnet M, Chaput M. (1999). Repeating triplets of spikes and oscillations in the mitral cell discharges of freely breathing rats. The European journal of neuroscience. 11 [PubMed]

Li Z. (1990). A model of olfactory adaptation and sensitivity enhancement in the olfactory bulb. Biological cybernetics. 62 [PubMed]

Li Z, Hopfield JJ. (1989). Modeling the olfactory bulb and its neural oscillatory processings. Biological cybernetics. 61 [PubMed]

Linster C, Gervais R. (1996). Investigation of the role of interneurons and their modulation by centrifugal fibers in a neural model of the olfactory bulb. Journal of computational neuroscience. 3 [PubMed]

Linster C, Hasselmo M. (1997). Modulation of inhibition in a model of olfactory bulb reduces overlap in the neural representation of olfactory stimuli. Behavioural brain research. 84 [PubMed]

Lowe G. (2003). Flash photolysis reveals a diversity of ionotropic glutamate receptors on the mitral cell somatodendritic membrane. Journal of neurophysiology. 90 [PubMed]

Margrie TW, Schaefer AT. (2003). Theta oscillation coupled spike latencies yield computational vigour in a mammalian sensory system. The Journal of physiology. 546 [PubMed]

Migliore M, Hines ML, Shepherd GM. (2005). The role of distal dendritic gap junctions in synchronization of mitral cell axonal output. Journal of computational neuroscience. 18 [PubMed]

Nusser Z, Kay LM, Laurent G, Homanics GE, Mody I. (2001). Disruption of GABA(A) receptors on GABAergic interneurons leads to increased oscillatory power in the olfactory bulb network. Journal of neurophysiology. 86 [PubMed]

Pressler RT, Strowbridge BW. (2006). Blanes cells mediate persistent feedforward inhibition onto granule cells in the olfactory bulb. Neuron. 49 [PubMed]

Rall W, Shepherd GM. (1968). Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. Journal of neurophysiology. 31 [PubMed]

Rinberg D, Koulakov A, Gelperin A. (2006). Sparse odor coding in awake behaving mice. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Rubin DB, Cleland TA. (2006). Dynamical mechanisms of odor processing in olfactory bulb mitral cells. Journal of neurophysiology. 96 [PubMed]

Schoppa NE. (2006). Synchronization of olfactory bulb mitral cells by precisely timed inhibitory inputs. Neuron. 49 [PubMed]

Schoppa NE. (2006). AMPA/kainate receptors drive rapid output and precise synchrony in olfactory bulb granule cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Schoppa NE, Kinzie JM, Sahara Y, Segerson TP, Westbrook GL. (1998). Dendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Usrey WM, Alonso JM, Reid RC. (2000). Synaptic interactions between thalamic inputs to simple cells in cat visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Zelles T, Boyd JD, Hardy AB, Delaney KR. (2006). Branch-specific Ca2+ influx from Na+-dependent dendritic spikes in olfactory granule cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

References and models that cite this paper

Carnevale NT, Morse TM. (1996). Research reports that have used NEURON Web published citations at the NEURON website.

Chow SF, Wick SD, Riecke H. (2012). Neurogenesis drives stimulus decorrelation in a model of the olfactory bulb. PLoS computational biology. 8 [PubMed]

David F, Courtiol E, Buonviso N, Fourcaud-Trocmé N. (2015). Competing Mechanisms of Gamma and Beta Oscillations in the Olfactory Bulb Based on Multimodal Inhibition of Mitral Cells Over a Respiratory Cycle. eNeuro. 2 [PubMed]

Gilra A, Bhalla US. (2015). Bulbar microcircuit model predicts connectivity and roles of interneurons in odor coding. PloS one. 10 [PubMed]

Li G, Cleland TA. (2013). A two-layer biophysical model of cholinergic neuromodulation in olfactory bulb. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]

Masurkar AV, Chen WR. (2011). Calcium currents of olfactory bulb juxtaglomerular cells: profile and multiple conductance plateau potential simulation. Neuroscience. 192 [PubMed]

McIntyre AB, Cleland TA. (2016). Biophysical constraints on lateral inhibition in the olfactory bulb. Journal of neurophysiology. 115 [PubMed]

Short SM, Morse TM, McTavish TS, Shepherd GM, Verhagen JV. (2016). Respiration Gates Sensory Input Responses in the Mitral Cell Layer of the Olfactory Bulb. PloS one. 11 [PubMed]

Yu Y et al. (2013). Sparse distributed representation of odors in a large-scale olfactory bulb circuit. PLoS computational biology. 9 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.