Walter JT, Alviña K, Womack MD, Chevez C, Khodakhah K. (2006). Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nature neuroscience. 9 [PubMed]

See more from authors: Walter JT · Alviña K · Womack MD · Chevez C · Khodakhah K

References and models cited by this paper
References and models that cite this paper

Luthman J et al. (2011). STD-dependent and independent encoding of input irregularity as spike rate in a computational model of a cerebellar nucleus neuron. Cerebellum (London, England). 10 [PubMed]

Masoli S, Solinas S, D'Angelo E. (2015). Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization. Frontiers in cellular neuroscience. 9 [PubMed]

Ovsepian SV et al. (2013). A defined heteromeric KV1 channel stabilizes the intrinsic pacemaking and regulates the output of deep cerebellar nuclear neurons to thalamic targets. The Journal of physiology. 591 [PubMed]

Solinas S et al. (2007). Fast-reset of pacemaking and theta-frequency resonance patterns in cerebellar golgi cells: simulations of their impact in vivo. Frontiers in cellular neuroscience. 1 [PubMed]

Steuber V, Jaeger D. (2013). Modeling the generation of output by the cerebellar nuclei. Neural networks : the official journal of the International Neural Network Society. 47 [PubMed]

Steuber V et al. (2007). Cerebellar LTD and pattern recognition by Purkinje cells. Neuron. 54 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.