Achard P, De Schutter E. (2006). Complex parameter landscape for a complex neuron model. PLoS computational biology. 2 [PubMed]
Ahmadian Y, Pillow JW, Paninski L. (2011). Efficient Markov chain Monte Carlo methods for decoding neural spike trains. Neural computation. 23 [PubMed]
Alonso LM, Marder E. (2019). Visualization of currents in neural models with similar behavior and different conductance densities. eLife. 8 [PubMed]
Bosch MK et al. (2015). Intracellular FGF14 (iFGF14) Is Required for Spontaneous and Evoked Firing in Cerebellar Purkinje Neurons and for Motor Coordination and Balance. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35 [PubMed]
Buhry L et al. (2011). Automated parameter estimation of the Hodgkin-Huxley model using the differential evolution algorithm: application to neuromimetic analog integrated circuits. Neural computation. 23 [PubMed]
Druckmann S et al. (2007). A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Frontiers in neuroscience. 1 [PubMed]
Golowasch J, Goldman MS, Abbott LF, Marder E. (2002). Failure of averaging in the construction of a conductance-based neuron model. Journal of neurophysiology. 87 [PubMed]
Gonçalves PJ et al. (2020). Training deep neural density estimators to identify mechanistic models of neural dynamics. eLife. 9 [PubMed]
HODGKIN AL, HUXLEY AF. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology. 117 [PubMed]
Hay E, Schürmann F, Markram H, Segev I. (2013). Preserving axosomatic spiking features despite diverse dendritic morphology. Journal of neurophysiology. 109 [PubMed]
Heckman CJ, Mottram C, Quinlan K, Theiss R, Schuster J. (2009). Motoneuron excitability: the importance of neuromodulatory inputs. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 120 [PubMed]
Hultborn H, Pierrot-Deseilligny E. (1979). Input-output relations in the pathway of recurrent inhibition to motoneurones in the cat. The Journal of physiology. 297 [PubMed]
Liu Z, Golowasch J, Marder E, Abbott LF. (1998). A model neuron with activity-dependent conductances regulated by multiple calcium sensors. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]
Mainen ZF, Joerges J, Huguenard JR, Sejnowski TJ. (1995). A model of spike initiation in neocortical pyramidal neurons. Neuron. 15 [PubMed]
Marder E, Goaillard JM. (2006). Variability, compensation and homeostasis in neuron and network function. Nature reviews. Neuroscience. 7 [PubMed]
Meliza CD et al. (2014). Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biological cybernetics. 108 [PubMed]
Nadim F, Olsen OH, De Schutter E, Calabrese RL. (1995). Modeling the leech heartbeat elemental oscillator. I. Interactions of intrinsic and synaptic currents. Journal of computational neuroscience. 2 [PubMed]
Pape HC, McCormick DA. (1989). Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarization-activated cation current. Nature. 340 [PubMed]
Park KS, Mohapatra DP, Misonou H, Trimmer JS. (2006). Graded regulation of the Kv2.1 potassium channel by variable phosphorylation. Science (New York, N.Y.). 313 [PubMed]
Prinz AA, Billimoria CP, Marder E. (2003). Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. Journal of neurophysiology. 90 [PubMed]
Prinz AA, Bucher D, Marder E. (2004). Similar network activity from disparate circuit parameters. Nature neuroscience. 7 [PubMed]
Roffman RC, Norris BJ, Calabrese RL. (2012). Animal-to-animal variability of connection strength in the leech heartbeat central pattern generator. Journal of neurophysiology. 107 [PubMed]
Schulz DJ, Goaillard JM, Marder E. (2006). Variable channel expression in identified single and electrically coupled neurons in different animals. Nature neuroscience. 9 [PubMed]
Schulz DJ, Goaillard JM, Marder EE. (2007). Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression. Proceedings of the National Academy of Sciences of the United States of America. 104 [PubMed]
Soto-Treviño C, Rabbah P, Marder E, Nadim F. (2005). Computational model of electrically coupled, intrinsically distinct pacemaker neurons. Journal of neurophysiology. 94 [PubMed]
Swensen AM, Bean BP. (2005). Robustness of burst firing in dissociated purkinje neurons with acute or long-term reductions in sodium conductance. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]
Toth BA, Kostuk M, Meliza CD, Margoliash D, Abarbanel HD. (2011). Dynamical estimation of neuron and network properties I: variational methods. Biological cybernetics. 105 [PubMed]
Van Geit W, Achard P, De Schutter E. (2007). Neurofitter: a parameter tuning package for a wide range of electrophysiological neuron models. Frontiers in neuroinformatics. 1 [PubMed]
Van Geit W, De Schutter E, Achard P. (2008). Automated neuron model optimization techniques: a review. Biological cybernetics. 99 [PubMed]
Vavoulis DV, Straub VA, Aston JA, Feng J. (2012). A self-organizing state-space-model approach for parameter estimation in hodgkin-huxley-type models of single neurons. PLoS computational biology. 8 [PubMed]
Virtanen P et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature methods. 17 [PubMed]
Zang Y, Dieudonné S, De Schutter E. (2018). Voltage- and Branch-Specific Climbing Fiber Responses in Purkinje Cells Cell reports. 24 [PubMed]