Wang YC et al. (2022). Multimodal parameter spaces of a complex multi-channel neuron model Frontiers in systems neuroscience. 16 [PubMed]

See more from authors: Wang YC · Rudi J · Velasco J · Sinha N · Idumah G · Powers RK · Heckman CJ · Chardon MK

References and models cited by this paper

Achard P, De Schutter E. (2006). Complex parameter landscape for a complex neuron model. PLoS computational biology. 2 [PubMed]

Ahmadian Y, Pillow JW, Paninski L. (2011). Efficient Markov chain Monte Carlo methods for decoding neural spike trains. Neural computation. 23 [PubMed]

Alonso LM, Marder E. (2019). Visualization of currents in neural models with similar behavior and different conductance densities. eLife. 8 [PubMed]

Bosch MK et al. (2015). Intracellular FGF14 (iFGF14) Is Required for Spontaneous and Evoked Firing in Cerebellar Purkinje Neurons and for Motor Coordination and Balance. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35 [PubMed]

Buhry L et al. (2011). Automated parameter estimation of the Hodgkin-Huxley model using the differential evolution algorithm: application to neuromimetic analog integrated circuits. Neural computation. 23 [PubMed]

Druckmann S et al. (2007). A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Frontiers in neuroscience. 1 [PubMed]

Golowasch J, Goldman MS, Abbott LF, Marder E. (2002). Failure of averaging in the construction of a conductance-based neuron model. Journal of neurophysiology. 87 [PubMed]

Gonçalves PJ et al. (2020). Training deep neural density estimators to identify mechanistic models of neural dynamics. eLife. 9 [PubMed]

HODGKIN AL, HUXLEY AF. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology. 117 [PubMed]

Hay E, Schürmann F, Markram H, Segev I. (2013). Preserving axosomatic spiking features despite diverse dendritic morphology. Journal of neurophysiology. 109 [PubMed]

Heckman CJ, Mottram C, Quinlan K, Theiss R, Schuster J. (2009). Motoneuron excitability: the importance of neuromodulatory inputs. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 120 [PubMed]

Hultborn H, Pierrot-Deseilligny E. (1979). Input-output relations in the pathway of recurrent inhibition to motoneurones in the cat. The Journal of physiology. 297 [PubMed]

Liu Z, Golowasch J, Marder E, Abbott LF. (1998). A model neuron with activity-dependent conductances regulated by multiple calcium sensors. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Mainen ZF, Joerges J, Huguenard JR, Sejnowski TJ. (1995). A model of spike initiation in neocortical pyramidal neurons. Neuron. 15 [PubMed]

Marder E, Goaillard JM. (2006). Variability, compensation and homeostasis in neuron and network function. Nature reviews. Neuroscience. 7 [PubMed]

Meliza CD et al. (2014). Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biological cybernetics. 108 [PubMed]

Nadim F, Olsen OH, De Schutter E, Calabrese RL. (1995). Modeling the leech heartbeat elemental oscillator. I. Interactions of intrinsic and synaptic currents. Journal of computational neuroscience. 2 [PubMed]

Pape HC, McCormick DA. (1989). Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarization-activated cation current. Nature. 340 [PubMed]

Park KS, Mohapatra DP, Misonou H, Trimmer JS. (2006). Graded regulation of the Kv2.1 potassium channel by variable phosphorylation. Science (New York, N.Y.). 313 [PubMed]

Prinz AA, Billimoria CP, Marder E. (2003). Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. Journal of neurophysiology. 90 [PubMed]

Prinz AA, Bucher D, Marder E. (2004). Similar network activity from disparate circuit parameters. Nature neuroscience. 7 [PubMed]

Roffman RC, Norris BJ, Calabrese RL. (2012). Animal-to-animal variability of connection strength in the leech heartbeat central pattern generator. Journal of neurophysiology. 107 [PubMed]

Schulz DJ, Goaillard JM, Marder E. (2006). Variable channel expression in identified single and electrically coupled neurons in different animals. Nature neuroscience. 9 [PubMed]

Schulz DJ, Goaillard JM, Marder EE. (2007). Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression. Proceedings of the National Academy of Sciences of the United States of America. 104 [PubMed]

Soto-Treviño C, Rabbah P, Marder E, Nadim F. (2005). Computational model of electrically coupled, intrinsically distinct pacemaker neurons. Journal of neurophysiology. 94 [PubMed]

Swensen AM, Bean BP. (2005). Robustness of burst firing in dissociated purkinje neurons with acute or long-term reductions in sodium conductance. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Toth BA, Kostuk M, Meliza CD, Margoliash D, Abarbanel HD. (2011). Dynamical estimation of neuron and network properties I: variational methods. Biological cybernetics. 105 [PubMed]

Van Geit W, Achard P, De Schutter E. (2007). Neurofitter: a parameter tuning package for a wide range of electrophysiological neuron models. Frontiers in neuroinformatics. 1 [PubMed]

Van Geit W, De Schutter E, Achard P. (2008). Automated neuron model optimization techniques: a review. Biological cybernetics. 99 [PubMed]

Vavoulis DV, Straub VA, Aston JA, Feng J. (2012). A self-organizing state-space-model approach for parameter estimation in hodgkin-huxley-type models of single neurons. PLoS computational biology. 8 [PubMed]

Virtanen P et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature methods. 17 [PubMed]

Zang Y, Dieudonné S, De Schutter E. (2018). Voltage- and Branch-Specific Climbing Fiber Responses in Purkinje Cells Cell reports. 24 [PubMed]

References and models that cite this paper
This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.