Klingauf J, Neher E. (1997). Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells. Biophysical journal. 72 [PubMed]

See more from authors: Klingauf J · Neher E

References and models cited by this paper
References and models that cite this paper

Ashhad S, Narayanan R. (2013). Quantitative interactions between the A-type K+ current and inositol trisphosphate receptors regulate intraneuronal Ca2+ waves and synaptic plasticity. The Journal of physiology. 591 [PubMed]

Basak R, Narayanan R. (2018). Active dendrites regulate the spatiotemporal spread of signaling microdomains. PLoS computational biology. 14 [PubMed]

Cornelisse LN, van Elburg RA, Meredith RM, Yuste R, Mansvelder HD. (2007). High speed two-photon imaging of calcium dynamics in dendritic spines: consequences for spine calcium kinetics and buffer capacity. PloS one. 2 [PubMed]

Doi T, Kuroda S, Michikawa T, Kawato M. (2005). Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Fink CC et al. (2000). An image-based model of calcium waves in differentiated neuroblastoma cells. Biophysical journal. 79 [PubMed]

Gil A, González-Vélez V, Villanueva J, Gutiérrez LM. (2017). Understanding the Role of Mitochondria Distribution in Calcium Dynamics and Secretion in Bovine Chromaffin Cells Modeling Cellular Systems.

Gilmanov IR, Samigullin DV, Vyskocil F, Nikolsky EE, Bukharaeva EA. (2008). Modeling of quantal neurotransmitter release kinetics in the presence of fixed and mobile calcium buffers. Journal of computational neuroscience. 25 [PubMed]

Hamid E, Church E, Alford S. (2019). Quantitation and Simulation of Single Action Potential-Evoked Ca2+ Signals in CA1 Pyramidal Neuron Presynaptic Terminals. eNeuro. 6 [PubMed]

Inoue M, lin H, Imanaga I, Ogawa K, Warashina A. (2004). InsP3 receptor type 2 and oscillatory and monophasic Ca2+ transients in rat adrenal chromaffin cells. Cell calcium. 35 [PubMed]

Kits KS, de Vlieger TA, Kooi BW, Mansvelder HD. (1999). Diffusion barriers limit the effect of mobile calcium buffers on exocytosis of large dense cored vesicles. Biophysical journal. 76 [PubMed]

Matveev V, Bertram R, Sherman A. (2006). Residual bound Ca2+ can account for the effects of Ca2+ buffers on synaptic facilitation. Journal of neurophysiology. 96 [PubMed]

Matveev V, Zucker RS, Sherman A. (2004). Facilitation through buffer saturation: constraints on endogenous buffering properties. Biophysical journal. 86 [PubMed]

Mukunda CL, Narayanan R. (2017). Degeneracy in the regulation of short-term plasticity and synaptic filtering by presynaptic mechanisms. The Journal of physiology. 595 [PubMed]

Ohana O, Sakmann B. (1998). Transmitter release modulation in nerve terminals of rat neocortical pyramidal cells by intracellular calcium buffers. The Journal of physiology. 513 ( Pt 1) [PubMed]

Thomson AM. (2003). Presynaptic frequency- and pattern-dependent filtering. Journal of computational neuroscience. 15 [PubMed]

Warashina A, Ogura T. (2004). Modeling of stimulation-secretion coupling in a chromaffin cell. Pflugers Archiv : European journal of physiology. 448 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.