Abbott LF, Nelson SB. (2000). Synaptic plasticity: taming the beast. Nature neuroscience. 3 Suppl [PubMed]

See more from authors: Abbott LF · Nelson SB

References and models cited by this paper

Abbott LF, Blum KI. (1996). Functional significance of long-term potentiation for sequence learning and prediction. Cerebral cortex (New York, N.Y. : 1991). 6 [PubMed]

Abbott LF, Varela JA, Sen K, Nelson SB. (1997). Synaptic depression and cortical gain control. Science (New York, N.Y.). 275 [PubMed]

Abraham WC, Tate WP. (1997). Metaplasticity: a new vista across the field of synaptic plasticity. Progress in neurobiology. 52 [PubMed]

Artun OB, Shouval HZ, Cooper LN. (1998). The effect of dynamic synapses on spatiotemporal receptive fields in visual cortex. Proceedings of the National Academy of Sciences of the United States of America. 95 [PubMed]

Bell CC, Han VZ, Sugawara Y, Grant K. (1997). Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature. 387 [PubMed]

Bi GQ, Poo MM. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Bienenstock EL, Cooper LN, Munro PW. (1982). Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2 [PubMed]

Blum KI, Abbott LF. (1996). A model of spatial map formation in the hippocampus of the rat. Neural computation. 8 [PubMed]

Buonomano DV. (1999). Distinct functional types of associative long-term potentiation in neocortical and hippocampal pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Chance FS, Nelson SB, Abbott LF. (1998). Synaptic depression and the temporal response characteristics of V1 cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Debanne D, Gähwiler BH, Thompson SM. (1994). Asynchronous pre- and postsynaptic activity induces associative long-term depression in area CA1 of the rat hippocampus in vitro. Proceedings of the National Academy of Sciences of the United States of America. 91 [PubMed]

Debanne D, Gähwiler BH, Thompson SM. (1998). Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. The Journal of physiology. 507 ( Pt 1) [PubMed]

Egger V, Feldmeyer D, Sakmann B. (1999). Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nature neuroscience. 2 [PubMed]

Feldman DE. (2000). Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron. 27 [PubMed]

Finnerty GT, Roberts LS, Connors BW. (1999). Sensory experience modifies the short-term dynamics of neocortical synapses. Nature. 400 [PubMed]

Gerstner W, Kempter R, van Hemmen JL, Wagner H. (1996). A neuronal learning rule for sub-millisecond temporal coding. Nature. 383 [PubMed]

Grossberg S. (1984). Some psychophysiological and pharmacological correlates of a developmental, cognitive, and motivational theory Brain And Information: Event Related Potentials.

Gustafsson B, Wigström H, Abraham WC, Huang YY. (1987). Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials. The Journal of neuroscience : the official journal of the Society for Neuroscience. 7 [PubMed]

Levy WB, Minai A. (1993). Sequence learning in a single trial. Proceedings of the INNS World Congress on Neural Networks II. Portland, Oregon,11-15 July.

Levy WB, Steward O. (1983). Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience. 8 [PubMed]

Liaw JS, Berger TW. (1996). Dynamic synapse: a new concept of neural representation and computation. Hippocampus. 6 [PubMed]

Linden DJ. (1999). The return of the spike: postsynaptic action potentials and the induction of LTP and LTD. Neuron. 22 [PubMed]

Lisman J. (1994). The CaM kinase II hypothesis for the storage of synaptic memory. Trends in neurosciences. 17 [PubMed]

Lissin DV et al. (1998). Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. Proceedings of the National Academy of Sciences of the United States of America. 95 [PubMed]

Magee JC, Johnston D. (1997). A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science (New York, N.Y.). 275 [PubMed]

Markram H, Lübke J, Frotscher M, Sakmann B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science (New York, N.Y.). 275 [PubMed]

Markram H, Tsodyks M. (1996). Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature. 382 [PubMed]

Mehta MR, Barnes CA, McNaughton BL. (1997). Experience-dependent, asymmetric expansion of hippocampal place fields. Proceedings of the National Academy of Sciences of the United States of America. 94 [PubMed]

Mehta MR, Quirk MC, Wilson MA. (2000). Experience-dependent asymmetric shape of hippocampal receptive fields. Neuron. 25 [PubMed]

Miller KD, MacKay DJC . (1994). The role of constraints in Hebbian learning. Neural Comput. 6

O'Brien RJ et al. (1998). Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron. 21 [PubMed]

O'Donovan MJ, Rinzel J. (1997). Synaptic depression: a dynamic regulator of synaptic communication with varied functional roles. Trends in neurosciences. 20 [PubMed]

Oja E. (1982). A simplified neuron model as a principal component analyzer. Journal of mathematical biology. 15 [PubMed]

Roberts PD. (1999). Computational consequences of temporally asymmetric learning rules: I. Differential hebbian learning. Journal of computational neuroscience. 7 [PubMed]

Rubin J, Lee DD, Sompolinsky H. (2001). Equilibrium properties of temporally asymmetric Hebbian plasticity. Physical review letters. 86 [PubMed]

Sejnowski TJ, Rao RPN. (2000). Predictive sequence learning in recurrent neocortical circuits Advances In Neural Information Processing Systems.

Selig DK, Nicoll RA, Malenka RC. (1999). Hippocampal long-term potentiation preserves the fidelity of postsynaptic responses to presynaptic bursts. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Shadlen MN, Newsome WT. (1994). Noise, neural codes and cortical organization. Current opinion in neurobiology. 4 [PubMed]

Song S, Miller KD, Abbott LF. (2000). Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature neuroscience. 3 [PubMed]

Sourdet V, Debanne D. (1999). The role of dendritic filtering in associative long-term synaptic plasticity. Learning & memory (Cold Spring Harbor, N.Y.). 6 [PubMed]

Thomson AM, Deuchars J. (1994). Temporal and spatial properties of local circuits in neocortex. Trends in neurosciences. 17 [PubMed]

Tsodyks M, Uziel A, Markram H. (2000). Synchrony generation in recurrent networks with frequency-dependent synapses. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Tsodyks MV, Markram H. (1997). The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proceedings of the National Academy of Sciences of the United States of America. 94 [PubMed]

Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB. (1998). Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature. 391 [PubMed]

Turrigiano GG, Nelson SB. (1998). Thinking globally, acting locally: AMPA receptor turnover and synaptic strength. Neuron. 21 [PubMed]

Turrigiano GG, Van_rossum MC, Bi B. (In Press). Learning rules that generate stable synaptic weight distributions J Neurosci.

Volgushev M, Voronin LL, Chistiakova M, Singer W. (1997). Relations between long-term synaptic modifications and paired-pulse interactions in the rat neocortex. The European journal of neuroscience. 9 [PubMed]

Watt AJ, van Rossum MC, MacLeod KM, Nelson SB, Turrigiano GG. (2000). Activity coregulates quantal AMPA and NMDA currents at neocortical synapses. Neuron. 26 [PubMed]

Zhang LI, Tao HW, Holt CE, Harris WA, Poo M. (1998). A critical window for cooperation and competition among developing retinotectal synapses. Nature. 395 [PubMed]

van Hemmen JL, Gerstner W, Kempter R. (1999). Hebbian learning and spiking neurons Physical Review E. 59

References and models that cite this paper

Antunes G, Faria da Silva SF, Simoes de Souza FM. (2018). Mirror Neurons Modeled Through Spike-Timing-Dependent Plasticity are Affected by Channelopathies Associated with Autism Spectrum Disorder. International journal of neural systems. 28 [PubMed]

Antunes G, Simoes-de-Souza FM. (2018). AMPA receptor trafficking and its role in heterosynaptic plasticity. Scientific reports. 8 [PubMed]

Barak O, Tsodyks M. (2006). Recognition by variance: learning rules for spatiotemporal patterns. Neural computation. 18 [PubMed]

Bhalla US. (2002). Biochemical signaling networks decode temporal patterns of synaptic input. Journal of computational neuroscience. 13 [PubMed]

Brader JM, Senn W, Fusi S. (2007). Learning real-world stimuli in a neural network with spike-driven synaptic dynamics. Neural computation. 19 [PubMed]

Brette R. (2006). Exact simulation of integrate-and-fire models with synaptic conductances. Neural computation. 18 [PubMed]

Brette R et al. (2007). Simulation of networks of spiking neurons: a review of tools and strategies. Journal of computational neuroscience. 23 [PubMed]

Burkitt AN, Meffin H, Grayden DB. (2004). Spike-timing-dependent plasticity: the relationship to rate-based learning for models with weight dynamics determined by a stable fixed point. Neural computation. 16 [PubMed]

Clopath C, Pedrosa V. (2017). The role of neuromodulators in cortical plasticity. A computational perspective. Front. Synaptic Neurosci.. 8

Conde-Sousa E, Aguiar P. (2013). A working memory model for serial order that stores information in the intrinsic excitability properties of neurons. Journal of computational neuroscience. 35 [PubMed]

Delgado JY, Gómez-González JF, Desai NS. (2010). Pyramidal neuron conductance state gates spike-timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

Ebner C, Clopath C, Jedlicka P, Cuntz H. (2019). Unifying Long-Term Plasticity Rules for Excitatory Synapses by Modeling Dendrites of Cortical Pyramidal Neurons. Cell reports. 29 [PubMed]

Eguchi A, Neymotin SA, Stringer SM. (2014). Color opponent receptive fields self-organize in a biophysical model of visual cortex via spike-timing dependent plasticity Frontiers in neural circuits. 8 [PubMed]

Florian RV. (2007). Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity. Neural computation. 19 [PubMed]

Gerkin RC, Lau PM, Nauen DW, Wang YT, Bi GQ. (2007). Modular competition driven by NMDA receptor subtypes in spike-timing-dependent plasticity. Journal of neurophysiology. 97 [PubMed]

Graupner M, Brunel N. (2012). Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location. Proceedings of the National Academy of Sciences of the United States of America. 109 [PubMed]

Guerrero-Rivera R, Morrison A, Diesmann M, Pearce TC. (2006). Programmable logic construction kits for hyper-real-time neuronal modeling. Neural computation. 18 [PubMed]

Gurney KN, Humphries MD, Redgrave P. (2015). A new framework for cortico-striatal plasticity: behavioural theory meets in vitro data at the reinforcement-action interface. PLoS biology. 13 [PubMed]

Guyonneau R, VanRullen R, Thorpe SJ. (2005). Neurons tune to the earliest spikes through STDP. Neural computation. 17 [PubMed]

Hosaka R, Araki O, Ikeguchi T. (2008). STDP provides the substrate for igniting synfire chains by spatiotemporal input patterns. Neural computation. 20 [PubMed]

Hummos A, Franklin CC, Nair SS. (2014). Intrinsic mechanisms stabilize encoding and retrieval circuits differentially in a hippocampal network model. Hippocampus. 24 [PubMed]

Jedlicka P, Benuskova L, Abraham WC. (2015). A Voltage-Based STDP Rule Combined with Fast BCM-Like Metaplasticity Accounts for LTP and Concurrent "Heterosynaptic" LTD in the Dentate Gyrus In Vivo. PLoS computational biology. 11 [PubMed]

Karmarkar UR, Najarian MT, Buonomano DV. (2002). Mechanisms and significance of spike-timing dependent plasticity. Biological cybernetics. 87 [PubMed]

King PD, Zylberberg J, DeWeese MR. (2013). Inhibitory interneurons decorrelate excitatory cells to drive sparse code formation in a spiking model of V1. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]

Legenstein R, Maass W. (2011). Branch-specific plasticity enables self-organization of nonlinear computation in single neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]

Legenstein R, Naeger C, Maass W. (2005). What can a neuron learn with spike-timing-dependent plasticity? Neural computation. 17 [PubMed]

Legenstein R, Pecevski D, Maass W. (2008). A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. PLoS computational biology. 4 [PubMed]

Lu HC et al. (2006). Role of efficient neurotransmitter release in barrel map development. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Masuda N, Aihara K. (2003). Duality of rate coding and temporal coding in multilayered feedforward networks. Neural computation. 15 [PubMed]

Masuda N, Aihara K. (2004). Self-organizing dual coding based on spike-time-dependent plasticity. Neural computation. 16 [PubMed]

Masuda N, Kori H. (2007). Formation of feedforward networks and frequency synchrony by spike-timing-dependent plasticity. Journal of computational neuroscience. 22 [PubMed]

Mirzakhalili E, Gourgou E, Booth V, Epureanu B. (2017). Synaptic Impairment and Robustness of Excitatory Neuronal Networks with Different Topologies. Frontiers in neural circuits. 11 [PubMed]

Mo CH, Gu M, Koch C. (2004). A learning rule for local synaptic interactions between excitation and shunting inhibition. Neural computation. 16 [PubMed]

Monaco JD, Knierim JJ, Zhang K. (2011). Sensory feedback, error correction, and remapping in a multiple oscillator model of place cell activity Frontiers in computational neuroscience. 5 [PubMed]

Morrison A, Mehring C, Geisel T, Aertsen AD, Diesmann M. (2005). Advancing the boundaries of high-connectivity network simulation with distributed computing. Neural computation. 17 [PubMed]

Muresan RC, Savin C. (2007). Resonance or integration? Self-sustained dynamics and excitability of neural microcircuits. Journal of neurophysiology. 97 [PubMed]

Narayanan R, Johnston D. (2010). The h current is a candidate mechanism for regulating the sliding modification threshold in a BCM-like synaptic learning rule. Journal of neurophysiology. 104 [PubMed]

Persi E, Horn D, Volman V, Segev R, Ben-Jacob E. (2004). Modeling of synchronized bursting events: the importance on inhomogeneity. Neural computation. 16 [PubMed]

Rabinowitch I, Segev I. (2006). The interplay between homeostatic synaptic plasticity and functional dendritic compartments. Journal of neurophysiology. 96 [PubMed]

Rabinowitch I, Segev I. (2006). The endurance and selectivity of spatial patterns of long-term potentiation/depression in dendrites under homeostatic synaptic plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Richmond P, Buesing L, Giugliano M, Vasilaki E. (2011). Democratic population decisions result in robust policy-gradient learning: a parametric study with GPU simulations. PloS one. 6 [PubMed]

Rumsey CC, Abbott LF. (2004). Equalization of synaptic efficacy by activity- and timing-dependent synaptic plasticity. Journal of neurophysiology. 91 [PubMed]

Saraga F, Wu CP, Zhang L, Skinner FK. (2003). Active dendrites and spike propagation in multi-compartment models of oriens-lacunosum/moleculare hippocampal interneurons. The Journal of physiology. 552 [PubMed]

Saudargiene A, Porr B, Wörgötter F. (2004). How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model. Neural computation. 16 [PubMed]

Sboev A, Rybka R, Serenko A. (2017). On the effect of stabilizing mean firing rate of a neuron due to STDP Procedia Computer Science. 119

Shanahan M. (2008). A spiking neuron model of cortical broadcast and competition. Consciousness and cognition. 17 [PubMed]

. (2004). Does a dendritic democracy need a ruler? Neurocomputing. 58

Swiercz W et al. (2006). A new synaptic plasticity rule for networks of spiking neurons. IEEE transactions on neural networks. 17 [PubMed]

Urakubo H, Aihara T, Kuroda S, Watanabe M, Kondo S. (2004). Spatial localization of synapses required for supralinear summation of action potentials and EPSPs. Journal of computational neuroscience. 16 [PubMed]

Vasilaki E, Giugliano M. (2014). Emergence of connectivity motifs in networks of model neurons with short- and long-term plastic synapses. PloS one. 9 [PubMed]

Wetmore DZ, Mukamel EA, Schnitzer MJ. (2008). Lock-and-key mechanisms of cerebellar memory recall based on rebound currents. Journal of neurophysiology. 100 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.