Cancelling redundant input in ELL pyramidal cells (Bol et al. 2011)


The paper investigates the property of the electrosensory lateral line lobe (ELL) of the brain of weakly electric fish to cancel predictable stimuli. Electroreceptors on the skin encode all signals in their firing activity, but superficial pyramidal (SP) cells in the ELL that receive this feedforward input do not respond to constant sinusoidal signals. This cancellation putatively occurs using a network of feedback delay lines and burst-induced synaptic plasticity between the delay lines and the SP cell that learns to cancel the redundant input. Biologically, the delay lines are parallel fibres from cerebellar-like granule cells in the eminentia granularis posterior. A model of this network (e.g. electroreceptors, SP cells, delay lines and burst-induced plasticity) was constructed to test whether the current knowledge of how the network operates is sufficient to cancel redundant stimuli.

Model Type: Realistic Network; Neuron or other electrically excitable cell

Region(s) or Organism(s): Cerebellum

Cell Type(s): ELL pyramidal cell

Model Concept(s): Dendritic Action Potentials; Bursting; Active Dendrites; Synaptic Plasticity; Long-term Synaptic Plasticity; Learning; Unsupervised Learning; STDP; Biofeedback; Noise Sensitivity

Simulation Environment: C or C++ program; MATLAB

Implementer(s): Bol, Kieran [kieran_bol at hotmail.com]

References:

Bol K, Marsat G, Harvey-Girard E, Longtin A, Maler L. (2011). Frequency-tuned cerebellar channels and burst-induced LTD lead to the cancellation of redundant sensory inputs. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]


This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.