The paper investigates the property of the electrosensory lateral line lobe (ELL) of the brain of weakly electric fish to cancel predictable stimuli. Electroreceptors on the skin encode all signals in their firing activity, but superficial pyramidal (SP) cells in the ELL that receive this feedforward input do not respond to constant sinusoidal signals. This cancellation putatively occurs using a network of feedback delay lines and burst-induced synaptic plasticity between the delay lines and the SP cell that learns to cancel the redundant input. Biologically, the delay lines are parallel fibres from cerebellar-like granule cells in the eminentia granularis posterior. A model of this network (e.g. electroreceptors, SP cells, delay lines and burst-induced plasticity) was constructed to test whether the current knowledge of how the network operates is sufficient to cancel redundant stimuli.
Model Type: Realistic Network; Neuron or other electrically excitable cell
Region(s) or Organism(s): Cerebellum
Cell Type(s): ELL pyramidal cell
Model Concept(s): Dendritic Action Potentials; Bursting; Active Dendrites; Synaptic Plasticity; Long-term Synaptic Plasticity; Learning; Unsupervised Learning; STDP; Biofeedback; Noise Sensitivity
Simulation Environment: C or C++ program; MATLAB
Implementer(s): Bol, Kieran [kieran_bol at hotmail.com]
References:
Bol K, Marsat G, Harvey-Girard E, Longtin A, Maler L. (2011). Frequency-tuned cerebellar channels and burst-induced LTD lead to the cancellation of redundant sensory inputs. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]