" ...Here, we show that the voltage dependence of the inwardly rectifying potassium (KIR) conductance activated by GABA(B) receptors adds substantial robustness to network simulations of bistability and the persistent firing that it underlies. The hyperpolarized state is robust because, at hyperpolarized potentials, the GABA(B)/KIR conductance is high and the NMDA conductance is low; the depolarized state is robust because, at depolarized potentials, the NMDA conductance is high and the GABA(B)/KIR conductance is low. Our results suggest that this complementary voltage dependence of GABA(B)/KIR and NMDA conductances makes them a "perfect couple" for producing voltage bistability."
Model Type: Realistic Network
Cell Type(s): Hodgkin-Huxley neuron
Currents: I K; I Na, leak; Kir
Receptors: GabaA; GabaB; AMPA; NMDA
Model Concept(s): Working memory; Dendritic Bistability
Simulation Environment: C or C++ program
Implementer(s): Sanders, Honi [honi at brandeis.edu]
References:
Sanders H, Berends M, Major G, Goldman MS, Lisman JE. (2013). NMDA and GABAB (KIR) conductances: the "perfect couple" for bistability. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]
Sanders H et al. (2014). A network that performs brute-force conversion of a temporal sequence to a spatial pattern: relevance to odor recognition. Frontiers in computational neuroscience. 8 [PubMed]