Mancilla JG, Lewis TJ, Pinto DJ, Rinzel J, Connors BW. (2007). Synchronization of electrically coupled pairs of inhibitory interneurons in neocortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

See more from authors: Mancilla JG · Lewis TJ · Pinto DJ · Rinzel J · Connors BW

References and models cited by this paper
References and models that cite this paper

Beverlin B, Kakalios J, Nykamp D, Netoff TI. (2012). Dynamical changes in neurons during seizures determine tonic to clonic shift. Journal of computational neuroscience. 33 [PubMed]

Chartove JA, McCarthy MM, Pittman-Polletta BR, Kopell NJ. (2020). A biophysical model of striatal microcircuits suggests gamma and beta oscillations interleaved at delta/theta frequencies mediate periodicity in motor control PLOS Computational Biology. 16

Couto J, Linaro D, De Schutter E, Giugliano M. (2015). On the firing rate dependency of the phase response curve of rat Purkinje neurons in vitro. PLoS computational biology. 11 [PubMed]

Gabbiani F, Cox SJ. (2010). Mathematics for Neuroscientists.

Golomb D et al. (2007). Mechanisms of firing patterns in fast-spiking cortical interneurons. PLoS computational biology. 3 [PubMed]

Ivanchenko MV, Thomas Nowotny, Selverston AI, Rabinovich MI. (2008). Pacemaker and network mechanisms of rhythm generation: cooperation and competition. Journal of theoretical biology. 253 [PubMed]

Kotaleski JH et al. (2011). Striatal fast-spiking interneurons: from firing patterns to postsynaptic impact Front. Syst. Neurosci.. 5:57

Miller J, Ryu H, Wang X, Booth V, Campbell SA. (2022). Patterns of synchronization in 2D networks of inhibitory neurons. Frontiers in computational neuroscience. 16 [PubMed]

Tikidji-Hamburyan RA, Martínez JJ, White JA, Canavier CC. (2015). Resonant Interneurons Can Increase Robustness of Gamma Oscillations. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35 [PubMed]

Vervaeke K et al. (2010). Rapid desynchronization of an electrically coupled interneuron network with sparse excitatory synaptic input. Neuron. 67 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.