Hartmann MJ, Bower JM. (1998). Oscillatory activity in the cerebellar hemispheres of unrestrained rats. Journal of neurophysiology. 80 [PubMed]

See more from authors: Hartmann MJ · Bower JM

References and models cited by this paper
References and models that cite this paper

D'Angelo E et al. (2001). Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k+-dependent mechanism. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

De Schutter E, Simoes-de-Souza FM. (2011). Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations Neural Systems & Circuits. 1:7

Jaeger D. (2003). No Parallel Fiber Volleys in the Cerebellar Cortex: Evidence from Cross-Correlation Analysis between Purkinje Cells in a Computer Model and in Recordings from Anesthetized Rats Journal of computational neuroscience. 14 [PubMed]

Kistler WM, De Zeeuw CI. (2003). Time windows and reverberating loops: a reverse-engineering approach to cerebellar function. Cerebellum (London, England). 2 [PubMed]

Maex R, De Schutter E. (1998). Synchronization of golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. Journal of neurophysiology. 80 [PubMed]

Solinas S et al. (2007). Fast-reset of pacemaking and theta-frequency resonance patterns in cerebellar golgi cells: simulations of their impact in vivo. Frontiers in cellular neuroscience. 1 [PubMed]

Sudhakar SK et al. (2017). Spatiotemporal network coding of physiological mossy fiber inputs by the cerebellar granular layer. PLoS computational biology. 13 [PubMed]

Vervaeke K et al. (2010). Rapid desynchronization of an electrically coupled interneuron network with sparse excitatory synaptic input. Neuron. 67 [PubMed]

Vos BP, Maex R, Volny-Luraghi A, De Schutter E. (1999). Parallel fibers synchronize spontaneous activity in cerebellar Golgi cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Yamazaki T, Tanaka S. (2007). A spiking network model for passage-of-time representation in the cerebellum. The European journal of neuroscience. 26 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.