Grillner S. (2006). Biological pattern generation: the cellular and computational logic of networks in motion. Neuron. 52 [PubMed]

See more from authors: Grillner S

References and models cited by this paper
References and models that cite this paper

Ausborn J, Shevtsova NA, Caggiano V, Danner SM, Rybak IA. (2019). Computational modeling of brainstem circuits controlling locomotor frequency and gait. eLife. 8 [PubMed]

Ausborn J, Snyder AC, Shevtsova NA, Rybak IA, Rubin JE. (2018). State-dependent rhythmogenesis and frequency control in a half-center locomotor CPG. Journal of neurophysiology. 119 [PubMed]

Gleeson P et al. (2010). NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS computational biology. 6 [PubMed]

Gorin M et al. (2016). Interdependent Conductances Drive Infraslow Intrinsic Rhythmogenesis in a Subset of Accessory Olfactory Bulb Projection Neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 36 [PubMed]

Gutierrez GJ, O'Leary T, Marder E. (2013). Multiple mechanisms switch an electrically coupled, synaptically inhibited neuron between competing rhythmic oscillators. Neuron. 77 [PubMed]

Harris KD et al. (2017). Different roles for inhibition in the rhythm-generating respiratory network. Journal of neurophysiology. 118 [PubMed]

Parker JR, Klishko AN, Prilutsky BI, Cymbalyuk GS. (2021). Asymmetric and transient properties of reciprocal activity of antagonists during the paw-shake response in the cat PLoS computational biology. 17 [PubMed]

Rubin JE, Hayes JA, Mendenhall JL, Del Negro CA. (2009). Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations. Proceedings of the National Academy of Sciences of the United States of America. 106 [PubMed]

Rubin JE, Shevtsova NA, Ermentrout GB, Smith JC, Rybak IA. (2009). Multiple rhythmic states in a model of the respiratory central pattern generator. Journal of neurophysiology. 101 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.