Damodaran S, Cressman JR, Jedrzejewski-Szmek Z, Blackwell KT. (2015). Desynchronization of fast-spiking interneurons reduces ß-band oscillations and imbalance in firing in the dopamine-depleted striatum. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35 [PubMed]
Damodaran S, Evans RC, Blackwell KT. (2014). Synchronized firing of fast-spiking interneurons is critical to maintain balanced firing between direct and indirect pathway neurons of the striatum. Journal of neurophysiology. 111 [PubMed]
Gluck MA, Moustafa AA. (2011). A neurocomputational model of dopamine and prefrontal-striatal interactions during multicue category learning by Parkinson patients. J Cogn Neurosci. 23(1)
Kitano K. (2023). The network configuration in Parkinsonian state compensates network activity change caused by loss of dopamine Physiological reports. 11 [PubMed]
Kumaravelu K, Brocker DT, Grill WM. (2016). A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson's disease. Journal of computational neuroscience. 40 [PubMed]
Lindroos R et al. (2018). Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales-Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2. Frontiers in neural circuits. 12 [PubMed]
Mulcahy G, Atwood B, Kuznetsov A. (2020). Basal ganglia role in learning rewarded actions and executing previously learned choices: Healthy and diseased states. PloS one. 15 [PubMed]