Bhalla US, Iyengar R. (1999). Emergent properties of networks of biological signaling pathways. Science (New York, N.Y.). 283 [PubMed]
Destexhe A, Sejnowski TJ. (2003). Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiological reviews. 83 [PubMed]
Helfer P, Shultz TR. (2018). Coupled feedback loops maintain synaptic long-term potentiation: A computational model of PKMzeta synthesis and AMPA receptor trafficking. PLoS computational biology. 14 [PubMed]
Helfer P, Shultz TR. (2018). Coupled feedback loops maintain synaptic long-term potentiation: A computational model arXiv.
Kim M, Huang T, Abel T, Blackwell KT. (2010). Temporal sensitivity of protein kinase a activation in late-phase long term potentiation. PLoS computational biology. 6 [PubMed]
Kim M et al. (2011). Colocalization of protein kinase A with adenylyl cyclase enhances protein kinase A activity during induction of long-lasting long-term-potentiation. PLoS computational biology. 7 [PubMed]
Luczak V, Blackwell KT, Abel T, Girault JA, Gervasi N. (2017). Dendritic diameter influences the rate and magnitude of hippocampal cAMP and PKA transients during ß-adrenergic receptor activation. Neurobiology of learning and memory. 138 [PubMed]
Sejnowski TJ, Destexhe A. (2000). Why do we sleep? Brain research. 886 [PubMed]
Smolen P, Baxter DA, Byrne JH. (2006). A model of the roles of essential kinases in the induction and expression of late long-term potentiation. Biophysical journal. 90 [PubMed]