Laurent G et al. (2001). Odor encoding as an active, dynamical process: experiments, computation, and theory. Annual review of neuroscience. 24 [PubMed]

See more from authors: Laurent G · Stopfer M · Friedrich RW · Rabinovich MI · Volkovskii A · Abarbanel HD

References and models cited by this paper
References and models that cite this paper

Bathellier B, Lagier S, Faure P, Lledo PM. (2006). Circuit properties generating gamma oscillations in a network model of the olfactory bulb. Journal of neurophysiology. 95 [PubMed]

Bazhenov M et al. (2001). Model of cellular and network mechanisms for odor-evoked temporal patterning in the locust antennal lobe. Neuron. 30 [PubMed]

Cortes JM, Torres JJ, Marro J, Garrido PL, Kappen HJ. (2006). Effects of fast presynaptic noise in attractor neural networks. Neural computation. 18 [PubMed]

Davison AP, Feng J, Brown D. (2003). Dendrodendritic inhibition and simulated odor responses in a detailed olfactory bulb network model. Journal of neurophysiology. 90 [PubMed]

Ermentrout B, Wang JW, Flores J, Gelperin A. (2004). Model for transition from waves to synchrony in the olfactory lobe of Limax. Journal of computational neuroscience. 17 [PubMed]

Fdez Galán R, Sachse S, Galizia CG, Herz AV. (2004). Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification. Neural computation. 16 [PubMed]

García-Sanchez M, Huerta R. (2003). Design parameters of the fan-out phase of sensory systems. Journal of computational neuroscience. 15 [PubMed]

Kim S, Singer BH, Zochowski M. (2006). Changing roles for temporal representation of odorant during the oscillatory response of the olfactory bulb. Neural computation. 18 [PubMed]

Lagier S et al. (2007). GABAergic inhibition at dendrodendritic synapses tunes gamma oscillations in the olfactory bulb. Proceedings of the National Academy of Sciences of the United States of America. 104 [PubMed]

Li G, Cleland TA. (2017). A coupled-oscillator model of olfactory bulb gamma oscillations. PLoS computational biology. 13 [PubMed]

Margrie TW, Schaefer AT. (2003). Theta oscillation coupled spike latencies yield computational vigour in a mammalian sensory system. The Journal of physiology. 546 [PubMed]

Martinez D. (2005). Oscillatory synchronization requires precise and balanced feedback inhibition in a model of the insect antennal lobe. Neural computation. 17 [PubMed]

McTavish TS, Migliore M, Shepherd GM, Hines ML. (2012). Mitral cell spike synchrony modulated by dendrodendritic synapse location. Frontiers in computational neuroscience. 6 [PubMed]

Migliore M, Hines ML, Shepherd GM. (2005). The role of distal dendritic gap junctions in synchronization of mitral cell axonal output. Journal of computational neuroscience. 18 [PubMed]

Nowotny T, Rabinovich MI, Huerta R, Abarbanel HD. (2003). Decoding temporal information through slow lateral excitation in the olfactory system of insects. Journal of computational neuroscience. 15 [PubMed]

Saghatelyan A et al. (2005). Activity-dependent adjustments of the inhibitory network in the olfactory bulb following early postnatal deprivation. Neuron. 46 [PubMed]

Salinas E, Sejnowski TJ. (2001). Correlated neuronal activity and the flow of neural information. Nature reviews. Neuroscience. 2 [PubMed]

Schoppa NE, Westbrook GL. (2002). AMPA autoreceptors drive correlated spiking in olfactory bulb glomeruli. Nature neuroscience. 5 [PubMed]

Torres JJ, Cortes JM, Marro J, Kappen HJ. (2007). Competition between synaptic depression and facilitation in attractor neural networks. Neural computation. 19 [PubMed]

Welday AC, Shlifer IG, Bloom ML, Zhang K, Blair HT. (2011). Cosine directional tuning of theta cell burst frequencies: evidence for spatial coding by oscillatory interference. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]

Yamazaki T, Tanaka S. (2007). A spiking network model for passage-of-time representation in the cerebellum. The European journal of neuroscience. 26 [PubMed]

Zavada A, Buckley CL, Martinez D, Rospars JP, Nowotny T. (2011). Competition-based model of pheromone component ratio detection in the moth. PloS one. 6 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.