Du K et al. (2017). Cell-type-specific inhibition of the dendritic plateau potential in striatal spiny projection neurons. Proceedings of the National Academy of Sciences of the United States of America. 114 [PubMed]

See more from authors: Du K · Wu YW · Lindroos R · Liu Y · Rózsa B · Katona G · Ding JB · Kotaleski JH

References and models cited by this paper

Ascoli GA, Donohue DE, Halavi M. (2007). NeuroMorpho.Org: a central resource for neuronal morphologies. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Chiovini B et al. (2014). Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves. Neuron. 82 [PubMed]

Czubayko U, Plenz D. (2002). Fast synaptic transmission between striatal spiny projection neurons. Proceedings of the National Academy of Sciences of the United States of America. 99 [PubMed]

Day M et al. (2006). Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nature neuroscience. 9 [PubMed]

Ding J, Peterson JD, Surmeier DJ. (2008). Corticostriatal and thalamostriatal synapses have distinctive properties. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

Evans RC et al. (2012). The effects of NMDA subunit composition on calcium influx and spike timing-dependent plasticity in striatal medium spiny neurons. PLoS computational biology. 8 [PubMed]

Farinella M, Ruedt DT, Gleeson P, Lanore F, Silver RA. (2014). Glutamate-bound NMDARs arising from in vivo-like network activity extend spatio-temporal integration in a L5 cortical pyramidal cell model. PLoS computational biology. 10 [PubMed]

Fino E et al. (2009). RuBi-Glutamate: Two-Photon and Visible-Light Photoactivation of Neurons and Dendritic spines. Frontiers in neural circuits. 3 [PubMed]

Galarreta M, Hestrin S. (1998). Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex. Nature neuroscience. 1 [PubMed]

Gambino F et al. (2014). Sensory-evoked LTP driven by dendritic plateau potentials in vivo. Nature. 515 [PubMed]

Gerfen CR. (1992). The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annual review of neuroscience. 15 [PubMed]

Gerfen CR, Surmeier DJ. (2011). Modulation of striatal projection systems by dopamine. Annual review of neuroscience. 34 [PubMed]

Gidon A, Segev I. (2012). Principles governing the operation of synaptic inhibition in dendrites. Neuron. 75 [PubMed]

Gittis AH, Kreitzer AC. (2012). Striatal microcircuitry and movement disorders. Trends in neurosciences. 35 [PubMed]

Gittis AH, Nelson AB, Thwin MT, Palop JJ, Kreitzer AC. (2010). Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

Graybiel AM. (2005). The basal ganglia: learning new tricks and loving it. Current opinion in neurobiology. 15 [PubMed]

Graybiel AM, Aosaki T, Flaherty AW, Kimura M. (1994). The basal ganglia and adaptive motor control. Science (New York, N.Y.). 265 [PubMed]

Ibáñez-Sandoval O et al. (2011). A novel functionally distinct subtype of striatal neuropeptide Y interneuron. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]

Kawaguchi Y. (1993). Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. The Journal of neuroscience : the official journal of the Society for Neuroscience. 13 [PubMed]

Kemp JM, Powell TP. (1971). The termination of fibres from the cerebral cortex and thalamus upon dendritic spines in the caudate nucleus: a study with the Golgi method. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 262 [PubMed]

Kita H, Kosaka T, Heizmann CW. (1990). Parvalbumin-immunoreactive neurons in the rat neostriatum: a light and electron microscopic study. Brain research. 536 [PubMed]

Koch C, Poggio T, Torre V. (1983). Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. Proceedings of the National Academy of Sciences of the United States of America. 80 [PubMed]

Koos T, Tepper JM, Wilson CJ. (2004). Comparison of IPSCs evoked by spiny and fast-spiking neurons in the neostriatum. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

Koós T, Tepper JM. (1999). Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nature neuroscience. 2 [PubMed]

Kubota Y, Kawaguchi Y. (2000). Dependence of GABAergic synaptic areas on the interneuron type and target size. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J. (2009). Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science (New York, N.Y.). 325 [PubMed]

Lavzin M, Rapoport S, Polsky A, Garion L, Schiller J. (2012). Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo. Nature. 490 [PubMed]

Liu G. (2004). Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites. Nature neuroscience. 7 [PubMed]

London M, Häusser M. (2005). Dendritic computation. Annual review of neuroscience. 28 [PubMed]

Lovett-Barron M et al. (2012). Regulation of neuronal input transformations by tunable dendritic inhibition. Nature neuroscience. 15 [PubMed]

Luo R, Janssen MJ, Partridge JG, Vicini S. (2013). Direct and GABA-mediated indirect effects of nicotinic ACh receptor agonists on striatal neurones. The Journal of physiology. 591 [PubMed]

MacAskill AF, Little JP, Cassel JM, Carter AG. (2012). Subcellular connectivity underlies pathway-specific signaling in the nucleus accumbens. Nature neuroscience. 15 [PubMed]

Major G, Larkum ME, Schiller J. (2013). Active properties of neocortical pyramidal neuron dendrites. Annual review of neuroscience. 36 [PubMed]

Mel BW, Schiller J. (2004). On the fight between excitation and inhibition: location is everything. Science's STKE : signal transduction knowledge environment. 2004 [PubMed]

Paille V et al. (2013). GABAergic circuits control spike-timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]

Planert H, Szydlowski SN, Hjorth JJ, Grillner S, Silberberg G. (2010). Dynamics of synaptic transmission between fast-spiking interneurons and striatal projection neurons of the direct and indirect pathways. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

Plotkin JL, Day M, Surmeier DJ. (2011). Synaptically driven state transitions in distal dendrites of striatal spiny neurons. Nature neuroscience. 14 [PubMed]

Poirazi P, Brannon T, Mel BW. (2003). Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron. 37 [PubMed]

Rall W, Rinzel J. (1973). Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophysical journal. 13 [PubMed]

Rhodes P. (2006). The properties and implications of NMDA spikes in neocortical pyramidal cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Schiller J, Major G, Koester HJ, Schiller Y. (2000). NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature. 404 [PubMed]

Schiller J, Schiller Y. (2001). NMDA receptor-mediated dendritic spikes and coincident signal amplification. Current opinion in neurobiology. 11 [PubMed]

Silver RA. (2010). Neuronal arithmetic. Nature reviews. Neuroscience. 11 [PubMed]

Smith AD, Bolam JP. (1990). The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends in neurosciences. 13 [PubMed]

Smith Y, Raju DV, Pare JF, Sidibe M. (2004). The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends in neurosciences. 27 [PubMed]

Stern EA, Jaeger D, Wilson CJ. (1998). Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo. Nature. 394 [PubMed]

Stern EA, Kincaid AE, Wilson CJ. (1997). Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. Journal of neurophysiology. 77 [PubMed]

Straub C et al. (2016). Principles of Synaptic Organization of GABAergic Interneurons in the Striatum. Neuron. 92 [PubMed]

Stuart GJ, Spruston N. (2015). Dendritic integration: 60 years of progress. Nature neuroscience. 18 [PubMed]

Tankus A, Fried I. (2012). Visuomotor coordination and motor representation by human temporal lobe neurons. Journal of cognitive neuroscience. 24 [PubMed]

Taverna S, Ilijic E, Surmeier DJ. (2008). Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson's disease. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

Tepper JM, Koós T, Wilson CJ. (2004). GABAergic microcircuits in the neostriatum. Trends in neurosciences. 27 [PubMed]

Wilson CJ, Kawaguchi Y. (1996). The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 16 [PubMed]

Wolf JA et al. (2005). NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Wu YW et al. (2015). Input- and cell-type-specific endocannabinoid-dependent LTD in the striatum. Cell reports. 10 [PubMed]

Xu NL et al. (2012). Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature. 492 [PubMed]

References and models that cite this paper

Dorman DB, Jędrzejewska-Szmek J, Blackwell KT. (2018). Inhibition enhances spatially-specific calcium encoding of synaptic input patterns in a biologically constrained model. eLife. 7 [PubMed]

Doron M, Chindemi G, Muller E, Markram H, Segev I. (2017). Timed Synaptic Inhibition Shapes NMDA Spikes, Influencing Local Dendritic Processing and Global I/O Properties of Cortical Neurons. Cell reports. 21 [PubMed]

Gao PP et al. (2021). Local Glutamate-Mediated Dendritic Plateau Potentials Change the State of the Cortical Pyramidal Neuron. Journal of neurophysiology. 125 [PubMed]

Hjorth JJJ et al. (2020). The microcircuits of striatum in silico. Proceedings of the National Academy of Sciences of the United States of America. 117 [PubMed]

Lindroos R et al. (2018). Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales-Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2. Frontiers in neural circuits. 12 [PubMed]

Trpevski D, Khodadadi Z, Carannante I, Hellgren Kotaleski J. (2023). Glutamate spillover drives robust all-or-none dendritic plateau potentials-an in silico investigation using models of striatal projection neurons. Frontiers in cellular neuroscience. 17 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.