Amitai Y et al. (2002). The spatial dimensions of electrically coupled networks of interneurons in the neocortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]

See more from authors: Amitai Y · Gibson JR · Beierlein M · Patrick SL · Ho AM · Connors BW · Golomb D

References and models cited by this paper
References and models that cite this paper

Calì C et al. (2008). Inferring connection proximity in networks of electrically coupled cells by subthreshold frequency response analysis. Journal of computational neuroscience. 24 [PubMed]

Ermentrout GB, Terman DH. (2010). Mathematical Foundations of Neuroscience Interdisciplinary Applied Mathematics. 35

Fink CG, Gliske S, Catoni N, Stacey WC. (2015). Network Mechanisms Generating Abnormal and Normal Hippocampal High-Frequency Oscillations: A Computational Analysis. eNeuro. 2 [PubMed]

Gansert J, Golowasch J, Nadim F. (2007). Sustained rhythmic activity in gap-junctionally coupled networks of model neurons depends on the diameter of coupled dendrites. Journal of neurophysiology. 98 [PubMed]

Golomb D et al. (2007). Mechanisms of firing patterns in fast-spiking cortical interneurons. PLoS computational biology. 3 [PubMed]

Hayut I, Fanselow EE, Connors BW, Golomb D. (2011). LTS and FS inhibitory interneurons, short-term synaptic plasticity, and cortical circuit dynamics. PLoS computational biology. 7 [PubMed]

Hjorth J, Blackwell KT, Kotaleski JH. (2009). Gap junctions between striatal fast-spiking interneurons regulate spiking activity and synchronization as a function of cortical activity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Kotaleski JH et al. (2011). Striatal fast-spiking interneurons: from firing patterns to postsynaptic impact Front. Syst. Neurosci.. 5:57

Pfeuty B, Mato G, Golomb D, Hansel D. (2003). Electrical synapses and synchrony: the role of intrinsic currents. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Pfeuty B, Mato G, Golomb D, Hansel D. (2005). The combined effects of inhibitory and electrical synapses in synchrony. Neural computation. 17 [PubMed]

Proddutur A, Yu J, Elgammal FS, Santhakumar V. (2013). Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations. Chaos (Woodbury, N.Y.). 23 [PubMed]

Saraga F, Ng L, Skinner FK. (2006). Distal gap junctions and active dendrites can tune network dynamics. Journal of neurophysiology. 95 [PubMed]

Saraga F, Skinner FK. (2004). Location, location, location (and density) of gap junctions in multi-compartment models. Neurocomputing. 58-60

Senn W, Fusi S. (2005). Learning only when necessary: better memories of correlated patterns in networks with bounded synapses. Neural computation. 17 [PubMed]

Stacey WC, Krieger A, Litt B. (2011). Network recruitment to coherent oscillations in a hippocampal computer model. Journal of neurophysiology. 105 [PubMed]

Stacey WC, Lazarewicz MT, Litt B. (2009). Synaptic noise and physiological coupling generate high-frequency oscillations in a hippocampal computational model. Journal of neurophysiology. 102 [PubMed]

Zsiros V, Aradi I, Maccaferri G. (2007). Propagation of postsynaptic currents and potentials via gap junctions in GABAergic networks of the rat hippocampus. The Journal of physiology. 578 [PubMed]

van Drongelen W et al. (2006). Role of persistent sodium current in bursting activity of mouse neocortical networks in vitro. Journal of neurophysiology. 96 [PubMed]

van Drongelen W, Lee HC, Stevens RL, Hereld M. (2007). propagation of seizure-like activity in a model of neocortex. Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society. 24 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.