Babinec P, Kucera M, Babincová M. (2005). Global characterization of time series using fractal dimension of corresponding recurrence plots: from dynamical systems to heart physiology Harmon Fractal Image Anal. 1
Barrio R, Martínez MA, Serrano S, Shilnikov A. (2014). Macro- and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons. Chaos (Woodbury, N.Y.). 24 [PubMed]
Bialowas J, Grzyb B. (2006). Modeling of LTP-related phenomena using an artificial firing cell Lecture Notes In Computer Science. 4232
Bialowas J, Grzyb B, Poszumski P. (2005). Firing Cell: An Artificial Neuron with Long-Term Synaptic Potentiation Capacity 2005 International Conference On Neural Networks And Brain. 3
Bialowas J, Grzyb B, Poszumski P. (2005). Firing cell: an artificial neuron with a simulation of long-term-potentiation related memory ISAROB. 11
Bliss TV, Collingridge GL. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 361 [PubMed]
Bliss TV, Collingridge GL, Morris RG. (2014). Synaptic plasticity in health and disease: introduction and overview. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 369 [PubMed]
Bliss TV, Lomo T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. The Journal of physiology. 232 [PubMed]
Borges RR, Borges FS, Lameu EL. (2016). Effects of the spike timing-dependent plasticity on the synchronisation in a random Hodgkin-Huxley neuronal network Commun Nonlinear Sci Numer Simul. 34
Bower JM, Beeman D. (2003). The book of GENESIS exploring realistic neural models with the GEneral NEural SImulation System (2nd ed).
Brette R et al. (2007). Simulation of networks of spiking neurons: a review of tools and strategies. Journal of computational neuroscience. 23 [PubMed]
Buonomano DV, Maass W. (2009). State-dependent computations: spatiotemporal processing in cortical networks. Nature reviews. Neuroscience. 10 [PubMed]
Clopath C, Büsing L, Vasilaki E, Gerstner W. (2010). Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nature neuroscience. 13 [PubMed]
Clopath C, Ziegler L, Vasilaki E, Büsing L, Gerstner W. (2008). Tag-trigger-consolidation: a model of early and late long-term-potentiation and depression. PLoS computational biology. 4 [PubMed]
Diano M et al. (2017). Dynamic Changes in Amygdala Psychophysiological Connectivity Reveal Distinct Neural Networks for Facial Expressions of Basic Emotions. Scientific reports. 7 [PubMed]
Duch W. (2000). Therapeutic implications of computer models of brain activity for Alzheimer disease JMIT. 5
Duch W. (2007). Computational models of dementia and neurological problems. Methods in molecular biology (Clifton, N.J.). 401 [PubMed]
Et AL, Kang DH, Jun HG, Ryoo KC. (2015). Emulation of spike-timing dependent plasticity in nano-scale phase change memory Neurocomputing. 155
Et AL, Osipov G, Komarov M, Nagornov R. (2016). Mixed-mode synchronization between two inhibitory neurons with postinhibitory rebound Commun Nonlinear Sci Numer Simul. 36
Feldman DE. (2012). The spike-timing dependence of plasticity. Neuron. 75 [PubMed]
Finkel LH. (2000). Neuroengineering models of brain disease. Annual review of biomedical engineering. 2 [PubMed]
George D, Hawkins J. (2009). Towards a mathematical theory of cortical micro-circuits. PLoS computational biology. 5 [PubMed]
Gerstner W, Brea J. (2016). Does computational neuroscience need new synaptic learning paradigms? Curr Opin Behav Sci. 11
HODGKIN AL, HUXLEY AF. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology. 117 [PubMed]
Hasselmo ME, McClelland JL. (1999). Neural models of memory. Current opinion in neurobiology. 9 [PubMed]
Hendrickson PJ, Yu GJ, Song D, Berger TW. (2015). Interactions between Inhibitory Interneurons and Excitatory Associational Circuitry in Determining Spatio-Temporal Dynamics of Hippocampal Dentate Granule Cells: A Large-Scale Computational Study. Frontiers in systems neuroscience. 9 [PubMed]
Hines M. (1989). A program for simulation of nerve equations with branching geometries. International journal of bio-medical computing. 24 [PubMed]
Izhikevich EM. (2004). Which model to use for cortical spiking neurons? IEEE transactions on neural networks. 15 [PubMed]
Jiang J, Xu R, Wang Y, Zhao A. (2008). The mechanism of chromate sorption by three variable charge soils. Chemosphere. 71 [PubMed]
Kasabov N. (2010). To spike or not to spike: a probabilistic spiking neuron model. Neural networks : the official journal of the International Neural Network Society. 23 [PubMed]
Kistler WM, Gerstner W. (2002). Spiking neuron models.
Korn H, Faure P. (2003). Is there chaos in the brain? II. Experimental evidence and related models. Comptes rendus biologies. 326 [PubMed]
Kreuz T, Haas JS, Morelli A, Abarbanel HD, Politi A. (2007). Measuring spike train synchrony. Journal of neuroscience methods. 165 [PubMed]
La Barbera S, Vuillaume D, Alibart F. (2015). Filamentary switching: synaptic plasticity through device volatility. ACS nano. 9 [PubMed]
Langenbeck B. (1950). Geräuschaudiometrische Diagnostik Die Absolutauswertung: Archiv für 0hren-, Nasen- und Kehlkopf-Heilkunde. 158
Llorens-Martín M et al. (2014). Selective alterations of neurons and circuits related to early memory loss in Alzheimer's disease. Frontiers in neuroanatomy. 8 [PubMed]
Malenka RC, Bear MF. (2004). LTP and LTD: an embarrassment of riches. Neuron. 44 [PubMed]
Mohemmed A, Schliebs S, Matsuda S, Kasabov N. (2012). Span: spike pattern association neuron for learning spatio-temporal spike patterns. International journal of neural systems. 22 [PubMed]
Nagata M, Matsuura T, Morie T. (2003). A multinanodot floating-gate MOSFET circuit for spiking neuron models IEEE Transactions On Nanotechnology. 2
Nobukawa S, Nishimura H, Yamanishi T. (2017). Chaotic Resonance in Typical Routes to Chaos in the Izhikevich Neuron Model. Scientific reports. 7 [PubMed]
Nobukawa S, Nishimura H, Yamanishi T, Liu JQ. (2015). Analysis of Chaotic Resonance in Izhikevich Neuron Model. PloS one. 10 [PubMed]
Nowotny T, Rabinovich MI, Abarbanel HD. (2003). Spatial representation of temporal information through spike-timing-dependent plasticity. Physical review. E, Statistical, nonlinear, and soft matter physics. 68 [PubMed]
Pereira A, Ferreira Almada L. (2011). Conceptual spaces and consciousness: integrating cognitive and affective processes Int J Mach Conscious. 03
Raymond CR. (2007). LTP forms 1, 2 and 3: different mechanisms for the "long" in long-term potentiation. Trends in neurosciences. 30 [PubMed]
Saïghi S et al. (2015). Plasticity in memristive devices for spiking neural networks. Frontiers in neuroscience. 9 [PubMed]
Segundo JP. (2003). Nonlinear Dynamics of Point Process Systems and Data. Int J Bifurc Chaos. 13
Shibata T, Ohmi T. (1991). An intelligent MOS transistor featuring gate-level weighted sum and threshold operations International Electron Devices Meeting [Technical Digest] IEDM.
Shibata T, Ohmi T. (1993). Neuron MOS binary-logic integrated circuits. I. Design fundamentals and soft-hardware-logic circuit implementation IEEE Transactions On Electron Devices. 40
Siekmeier PJ, Hasselmo ME, Howard MW, Coyle J. (2007). Modeling of context-dependent retrieval in hippocampal region CA1: implications for cognitive function in schizophrenia. Schizophrenia research. 89 [PubMed]
Sikora MA, Gottesman J, Miller RF. (2005). A computational model of the ribbon synapse. Journal of neuroscience methods. 145 [PubMed]
Sjöström PJ, Rancz EA, Roth A, Häusser M. (2008). Dendritic excitability and synaptic plasticity. Physiological reviews. 88 [PubMed]
Softky W. (1994). Sub-millisecond coincidence detection in active dendritic trees. Neuroscience. 58 [PubMed]
Traub RD et al. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. Journal of neurophysiology. 93 [PubMed]
Uhlhaas PJ, Singer W. (2006). Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron. 52 [PubMed]
Wang M, Shen L, Shen R. (2009). Affective e-Learning: Using “emotional” data to improve learning in pervasive learning environment related work and the pervasive e-learning platform Educ Technol Soc. 12
Xu NL, Ye CQ, Poo MM, Zhang XH. (2006). Coincidence detection of synaptic inputs is facilitated at the distal dendrites after long-term potentiation induction. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]