Martina M, Schultz JH, Ehmke H, Monyer H, Jonas P. (1998). Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

See more from authors: Martina M · Schultz JH · Ehmke H · Monyer H · Jonas P

References and models cited by this paper
References and models that cite this paper

Aussel A, Fiebelkorn IC, Kastner S, Kopell NJ, Pittman-Polletta BR. (2023). Interacting rhythms enhance sensitivity of target detection in a fronto-parietal computational model of visual attention eLife. 12 [PubMed]

Bartos M, Vida I, Frotscher M, Geiger JR, Jonas P. (2001). Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

Bartos M et al. (2002). Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proceedings of the National Academy of Sciences of the United States of America. 99 [PubMed]

Fernandez FR, Mehaffey WH, Molineux ML, Turner RW. (2005). High-threshold K+ current increases gain by offsetting a frequency-dependent increase in low-threshold K+ current. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Geisler C, Brunel N, Wang XJ. (2005). Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. Journal of neurophysiology. 94 [PubMed]

Golomb D et al. (2007). Mechanisms of firing patterns in fast-spiking cortical interneurons. PLoS computational biology. 3 [PubMed]

Golomb D, Yue C, Yaari Y. (2006). Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study. Journal of neurophysiology. 96 [PubMed]

Huang CW, Tsai JJ, Huang CC, Wu SN. (2009). Experimental and simulation studies on the mechanisms of levetiracetam-mediated inhibition of delayed-rectifier potassium current (KV3.1): contribution to the firing of action potentials. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society. 60 [PubMed]

Jaffe DB, Brenner R. (2018). A computational model for how the fast afterhyperpolarization paradoxically increases gain in regularly firing neurons. Journal of neurophysiology. 119 [PubMed]

Lawrence JJ et al. (2006). Somatodendritic Kv7/KCNQ/M channels control interspike interval in hippocampal interneurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Lien CC, Martina M, Schultz JH, Ehmke H, Jonas P. (2002). Gating, modulation and subunit composition of voltage-gated K(+) channels in dendritic inhibitory interneurones of rat hippocampus. The Journal of physiology. 538 [PubMed]

Masurkar AV, Chen WR. (2011). Potassium currents of olfactory bulb juxtaglomerular cells: characterization, simulation, and implications for plateau potential firing. Neuroscience. 192 [PubMed]

Saraga F, Ng L, Skinner FK. (2006). Distal gap junctions and active dendrites can tune network dynamics. Journal of neurophysiology. 95 [PubMed]

Saraga F, Skinner FK. (2004). Location, location, location (and density) of gap junctions in multi-compartment models. Neurocomputing. 58-60

Shen W, Hernandez-Lopez S, Tkatch T, Held JE, Surmeier DJ. (2004). Kv1.2-containing K+ channels regulate subthreshold excitability of striatal medium spiny neurons. Journal of neurophysiology. 91 [PubMed]

Stiefel KM, Englitz B, Sejnowski TJ. (2013). Origin of intrinsic irregular firing in cortical interneurons. Proceedings of the National Academy of Sciences of the United States of America. 110 [PubMed]

Sudhakar SK, Choi TJ, Ahmed OJ. (2019). Biophysical Modeling Suggests Optimal Drug Combinations for Improving the Efficacy of GABA Agonists after Traumatic Brain Injuries. Journal of neurotrauma. 36 [PubMed]

Traub RD, Buhl EH, Gloveli T, Whittington MA. (2003). Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na+ conductance or by blocking BK channels. Journal of neurophysiology. 89 [PubMed]

Traub RD, Middleton SJ, Knöpfel T, Whittington MA. (2008). Model of very fast (greater than 75 Hz) network oscillations generated by electrical coupling between the proximal axons of cerebellar Purkinje cells. The European journal of neuroscience. 28 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.