Shelton DP. (1985). Membrane resistivity estimated for the Purkinje neuron by means of a passive computer model. Neuroscience. 14 [PubMed]

See more from authors: Shelton DP

References and models cited by this paper
References and models that cite this paper

Bernander O, Koch C, Douglas RJ. (1994). Amplification and linearization of distal synaptic input to cortical pyramidal cells. Journal of neurophysiology. 72 [PubMed]

Borst A, Haag J. (1996). The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties. Journal of computational neuroscience. 3 [PubMed]

Brown SA, Moraru II, Schaff JC, Loew LM. (2011). Virtual NEURON: a strategy for merged biochemical and electrophysiological modeling. Journal of computational neuroscience. 31 [PubMed]

Bush PC, Sejnowski TJ. (1993). Reduced compartmental models of neocortical pyramidal cells. Journal of neuroscience methods. 46 [PubMed]

Bush PC, Sejnowski TJ. (1994). Effects of inhibition and dendritic saturation in simulated neocortical pyramidal cells. Journal of neurophysiology. 71 [PubMed]

Chono K, Takagi H, Koyama S, Suzuki H, Ito E. (2003). A cell model study of calcium influx mechanism regulated by calcium-dependent potassium channels in Purkinje cell dendrites. Journal of neuroscience methods. 129 [PubMed]

Coop AD, Reeke GN. (2001). The composite neuron: a realistic one-compartment Purkinje cell model suitable for large-scale neuronal network simulations. Journal of computational neuroscience. 10 [PubMed]

D'Aguanno A, Bardakjian BL, Carlen PL. (1989). A system model for investigating passive electrical properties of neurons. Biophysical journal. 55 [PubMed]

De Schutter E, Bower JM. (1994). An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. Journal of neurophysiology. 71 [PubMed]

Forrest MD. (2015). Simulation of alcohol action upon a detailed Purkinje neuron model and a simpler surrogate model that runs >400 times faster. BMC neuroscience. 16 [PubMed]

Genet S, Delord B. (2002). A biophysical model of nonlinear dynamics underlying plateau potentials and calcium spikes in purkinje cell dendrites. Journal of neurophysiology. 88 [PubMed]

Genet S, Sabarly L, Guigon E, Berry H, Delord B. (2010). Dendritic signals command firing dynamics in a mathematical model of cerebellar Purkinje cells. Biophysical journal. 99 [PubMed]

Golding NL, Mickus TJ, Katz Y, Kath WL, Spruston N. (2005). Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. The Journal of physiology. 568 [PubMed]

Grosche J, Kettenmann H, Reichenbach A. (2002). Bergmann glial cells form distinct morphological structures to interact with cerebellar neurons. Journal of neuroscience research. 68 [PubMed]

Henze DA, Cameron WE, Barrionuevo G. (1996). Dendritic morphology and its effects on the amplitude and rise-time of synaptic signals in hippocampal CA3 pyramidal cells. The Journal of comparative neurology. 369 [PubMed]

Marasco A, Limongiello A, Migliore M. (2013). Using Strahler's analysis to reduce up to 200-fold the run time of realistic neuron models. Scientific reports. 3 [PubMed]

Miyasho T et al. (2001). Low-threshold potassium channels and a low-threshold calcium channel regulate Ca2+ spike firing in the dendrites of cerebellar Purkinje neurons: a modeling study. Brain research. 891 [PubMed]

Quadroni R, Knöpfel T. (1994). Compartmental models of type A and type B guinea pig medial vestibular neurons. Journal of neurophysiology. 72 [PubMed]

Roth A, Häusser M. (2001). Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings. The Journal of physiology. 535 [PubMed]

Sanchez RM, Surkis A, Leonard CS. (1998). Voltage-clamp analysis and computer simulation of a novel cesium-resistant A-current in guinea pig laterodorsal tegmental neurons. Journal of neurophysiology. 79 [PubMed]

Spruston N, Jaffe DB, Williams SH, Johnston D. (1993). Voltage- and space-clamp errors associated with the measurement of electrotonically remote synaptic events. Journal of neurophysiology. 70 [PubMed]

Spruston N, Johnston D. (1992). Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. Journal of neurophysiology. 67 [PubMed]

Staub C, De Schutter E, Knöpfel T. (1994). Voltage-imaging and simulation of effects of voltage- and agonist-activated conductances on soma-dendritic voltage coupling in cerebellar Purkinje cells. Journal of computational neuroscience. 1 [PubMed]

Stuart G, Spruston N. (1998). Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Surkis A, Peskin CS, Tranchina D, Leonard CS. (1998). Recovery of cable properties through active and passive modeling of subthreshold membrane responses from laterodorsal tegmental neurons. Journal of neurophysiology. 80 [PubMed]

Thurbon D, Lüscher HR, Hofstetter T, Redman SJ. (1998). Passive electrical properties of ventral horn neurons in rat spinal cord slices. Journal of neurophysiology. 79 [PubMed]

Trevelyan AJ, Jack J. (2002). Detailed passive cable models of layer 2/3 pyramidal cells in rat visual cortex at different temperatures. The Journal of physiology. 539 [PubMed]

Vetter P, Roth A, Häusser M. (2001). Propagation of action potentials in dendrites depends on dendritic morphology. Journal of neurophysiology. 85 [PubMed]

Winslow JL, Jou SF, Wang S, Wojtowicz JM. (1999). Signals in stochastically generated neurons. Journal of computational neuroscience. 6 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.