Andersson G, Armstrong DM. (1987). Complex spikes in Purkinje cells in the lateral vermis (b zone) of the cat cerebellum during locomotion. The Journal of physiology. 385 [PubMed]
Bindokas VP, Brorson JR, Miller RJ. (1993). Characteristics of voltage sensitive calcium channels in dendrites of cultured rat cerebellar neurons. Neuropharmacology. 32 [PubMed]
Bossu JL, Dupont JL, Feltz A. (1989). Calcium currents in rat cerebellar Purkinje cells maintained in culture. Neuroscience. 30 [PubMed]
Bourinet E et al. (1996). The alpha 1E calcium channel exhibits permeation properties similar to low-voltage-activated calcium channels. The Journal of neuroscience : the official journal of the Society for Neuroscience. 16 [PubMed]
De Schutter E. (1998). Dendritic voltage and calcium-gated channels amplify the variability of postsynaptic responses in a Purkinje cell model. Journal of neurophysiology. 80 [PubMed]
De Schutter E, Bower JM. (1994). An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. Journal of neurophysiology. 71 [PubMed]
De Schutter E, Bower JM. (1994). An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses. Journal of neurophysiology. 71 [PubMed]
De Schutter E, Smolen P. (1998). Calcium dynamics in large neuronal models Methods In Neuronal Modeling: From Ions To Networks.
Denk W, Sugimori M, Llinás R. (1995). Two types of calcium response limited to single spines in cerebellar Purkinje cells. Proceedings of the National Academy of Sciences of the United States of America. 92 [PubMed]
Eilers J, Augustine GJ, Konnerth A. (1995). Subthreshold synaptic Ca2+ signalling in fine dendrites and spines of cerebellar Purkinje neurons. Nature. 373 [PubMed]
HODGKIN AL, HUXLEY AF. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology. 117 [PubMed]
Hines ML, Carnevale NT. (1997). The NEURON simulation environment. Neural computation. 9 [PubMed]
Hirano T, Hagiwara S. (1989). Kinetics and distribution of voltage-gated Ca, Na and K channels on the somata of rat cerebellar Purkinje cells. Pflugers Archiv : European journal of physiology. 413 [PubMed]
Hounsgaard J, Kiehn O. (1989). Serotonin-induced bistability of turtle motoneurones caused by a nifedipine-sensitive calcium plateau potential. The Journal of physiology. 414 [PubMed]
Hounsgaard J, Midtgaard J. (1988). Intrinsic determinants of firing pattern in Purkinje cells of the turtle cerebellum in vitro. The Journal of physiology. 402 [PubMed]
Jaeger D, Bower JM. (1994). Prolonged responses in rat cerebellar Purkinje cells following activation of the granule cell layer: an intracellular in vitro and in vivo investigation. Experimental brain research. 100 [PubMed]
Jaeger D, De Schutter E, Bower JM. (1997). The role of synaptic and voltage-gated currents in the control of Purkinje cell spiking: a modeling study. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]
Johnston D, Magee JC, Colbert CM, Cristie BR. (1996). Active properties of neuronal dendrites. Annual review of neuroscience. 19 [PubMed]
Kaneda M, Wakamori M, Ito C, Akaike N. (1990). Low-threshold calcium current in isolated Purkinje cell bodies of rat cerebellum. Journal of neurophysiology. 63 [PubMed]
Koch C, Adams PR, Yamada WM. (1998). Multiple channels and calcium dynamics. Methods In Neuronal Modeling: From Synapses To Networks.
Lev-Ram V, Miyakawa H, Lasser-Ross N, Ross WN. (1992). Calcium transients in cerebellar Purkinje neurons evoked by intracellular stimulation. Journal of neurophysiology. 68 [PubMed]
Llinás R, Sugimori M. (1980). Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. The Journal of physiology. 305 [PubMed]
Llinás R, Sugimori M. (1980). Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. The Journal of physiology. 305 [PubMed]
Llinás RR. (1988). The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science (New York, N.Y.). 242 [PubMed]
Llinás RR, Sugimori M, Cherksey B. (1989). Voltage-dependent calcium conductances in mammalian neurons. The P channel. Annals of the New York Academy of Sciences. 560 [PubMed]
Major G, Larkman AU, Jonas P, Sakmann B, Jack JJ. (1994). Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. The Journal of neuroscience : the official journal of the Society for Neuroscience. 14 [PubMed]
Midtgaard J. (1995). Spatial synaptic integration in Purkinje cell dendrites. Journal of physiology, Paris. 89 [PubMed]
Miyakawa H, Lev-Ram V, Lasser-Ross N, Ross WN. (1992). Calcium transients evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig cerebellar Purkinje neurons. Journal of neurophysiology. 68 [PubMed]
Pellionisz A, Llinás R. (1977). A computer model of cerebellar Purkinje cells. Neuroscience. 2 [PubMed]
Raman IM, Bean BP. (1999). Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]
Rapp M, Segev I, Yarom Y. (1994). Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje cells. The Journal of physiology. 474 [PubMed]
Regan LJ. (1991). Voltage-dependent calcium currents in Purkinje cells from rat cerebellar vermis. The Journal of neuroscience : the official journal of the Society for Neuroscience. 11 [PubMed]
Shelton DP. (1985). Membrane resistivity estimated for the Purkinje neuron by means of a passive computer model. Neuroscience. 14 [PubMed]
Soong TW et al. (1993). Structure and functional expression of a member of the low voltage-activated calcium channel family. Science (New York, N.Y.). 260 [PubMed]
Storm JF. (1988). Temporal integration by a slowly inactivating K+ current in hippocampal neurons. Nature. 336 [PubMed]
Wang Y, Strahlendorf JC, Strahlendorf HK. (1991). A transient voltage-dependent outward potassium current in mammalian cerebellar Purkinje cells. Brain research. 567 [PubMed]
Watanabe S et al. (1998). Differential roles of two types of voltage-gated Ca2+ channels in the dendrites of rat cerebellar Purkinje neurons. Brain research. 791 [PubMed]
Yokoyama CT et al. (1995). Biochemical properties and subcellular distribution of the neuronal class E calcium channel alpha 1 subunit. The Journal of neuroscience : the official journal of the Society for Neuroscience. 15 [PubMed]
Anwar H et al. (2014). Dendritic diameters affect the spatial variability of intracellular calcium dynamics in computer models. Frontiers in cellular neuroscience. 8 [PubMed]
Barkai O, Butterman R, Katz B, Lev S, Binshtok AM. (2020). The Input-Output Relation of Primary Nociceptive Neurons is Determined by the Morphology of the Peripheral Nociceptive Terminals. The Journal of neuroscience : the official journal of the Society for Neuroscience. 40 [PubMed]
Ben-Shalom R et al. (2022). NeuroGPU: Accelerating multi-compartment, biophysically detailed neuron simulations on GPUs Journal of neuroscience methods. 366 [PubMed]
Brown SA, Moraru II, Schaff JC, Loew LM. (2011). Virtual NEURON: a strategy for merged biochemical and electrophysiological modeling. Journal of computational neuroscience. 31 [PubMed]
Carnevale NT, Hines M. (2003). Personal Communication of NEURON bibliography .
Chono K, Takagi H, Koyama S, Suzuki H, Ito E. (2003). A cell model study of calcium influx mechanism regulated by calcium-dependent potassium channels in Purkinje cell dendrites. Journal of neuroscience methods. 129 [PubMed]
Dewell RB, Gabbiani F. (2019). Active membrane conductances and morphology of a collision detection neuron broaden its impedance profile and improve discrimination of input synchrony. Journal of neurophysiology. 122 [PubMed]
Forrest MD. (2015). Simulation of alcohol action upon a detailed Purkinje neuron model and a simpler surrogate model that runs >400 times faster. BMC neuroscience. 16 [PubMed]
Genet S, Delord B. (2002). A biophysical model of nonlinear dynamics underlying plateau potentials and calcium spikes in purkinje cell dendrites. Journal of neurophysiology. 88 [PubMed]
Hines ML, Markram H, Schürmann F. (2008). Fully implicit parallel simulation of single neurons. Journal of computational neuroscience. 25 [PubMed]
Luque NR, Naveros F, Carrillo RR, Ros E, Arleo A. (2019). Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation. PLoS computational biology. 15 [PubMed]
Marasco A, Limongiello A, Migliore M. (2013). Using Strahler's analysis to reduce up to 200-fold the run time of realistic neuron models. Scientific reports. 3 [PubMed]
Masurkar AV, Chen WR. (2011). Potassium currents of olfactory bulb juxtaglomerular cells: characterization, simulation, and implications for plateau potential firing. Neuroscience. 192 [PubMed]
Migliore M, Shepherd GM. (2002). Emerging rules for the distributions of active dendritic conductances. Nature reviews. Neuroscience. 3 [PubMed]
Santamaria F, Tripp PG, Bower JM. (2007). Feedforward inhibition controls the spread of granule cell-induced Purkinje cell activity in the cerebellar cortex. Journal of neurophysiology. 97 [PubMed]
Stockton DB, Santamaria F. (2015). NeuroManager: a workflow analysis based simulation management engine for computational neuroscience. Frontiers in neuroinformatics. 9 [PubMed]
Traub RD, Middleton SJ, Knöpfel T, Whittington MA. (2008). Model of very fast (greater than 75 Hz) network oscillations generated by electrical coupling between the proximal axons of cerebellar Purkinje cells. The European journal of neuroscience. 28 [PubMed]