Stratford KJ, Tarczy-Hornoch K, Martin KA, Bannister NJ, Jack JJ. (1996). Excitatory synaptic inputs to spiny stellate cells in cat visual cortex. Nature. 382 [PubMed]

See more from authors: Stratford KJ · Tarczy-Hornoch K · Martin KA · Bannister NJ · Jack JJ

References and models cited by this paper
References and models that cite this paper

Banitt Y, Martin KA, Segev I. (2005). Depressed responses of facilitatory synapses. Journal of neurophysiology. 94 [PubMed]

Banitt Y, Martin KA, Segev I. (2007). A biologically realistic model of contrast invariant orientation tuning by thalamocortical synaptic depression. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Buchs NJ, Senn W. (2002). Spike-based synaptic plasticity and the emergence of direction selective simple cells: simulation results. Journal of computational neuroscience. 13 [PubMed]

Buonomano DV. (2000). Decoding temporal information: A model based on short-term synaptic plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Bush P, Priebe N. (1998). GABAergic inhibitory control of the transient and sustained components of orientation selectivity in a model microcolumn in layer 4 of cat visual cortex. Neural computation. 10 [PubMed]

Fuhrmann G, Segev I, Markram H, Tsodyks M. (2002). Coding of temporal information by activity-dependent synapses. Journal of neurophysiology. 87 [PubMed]

Harris JJ, Engl E, Attwell D, Jolivet RB. (2019). Energy-efficient information transfer at thalamocortical synapses. PLoS computational biology. 15 [PubMed]

Houweling AR et al. (2002). Frequency-selective augmenting responses by short-term synaptic depression in cat neocortex. The Journal of physiology. 542 [PubMed]

Lavzin M, Rapoport S, Polsky A, Garion L, Schiller J. (2012). Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo. Nature. 490 [PubMed]

Lestienne R. (2001). Spike timing, synchronization and information processing on the sensory side of the central nervous system. Progress in neurobiology. 65 [PubMed]

Lu HC et al. (2006). Role of efficient neurotransmitter release in barrel map development. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Puccini GD, Sanchez-Vives MV, Compte A. (2006). Selective detection of abrupt input changes by integration of spike-frequency adaptation and synaptic depression in a computational network model. Journal of physiology, Paris. 100 [PubMed]

Sejnowski TJ, Steriade M, Timofeev I, Houweling AR, Bazhenov M. (1999). Cortical and thalamic components of augmenting responses: A modeling study Neurocomputing. 26-27

Senn W, Buchs NJ. (2003). Spike-based synaptic plasticity and the emergence of direction selective simple cells: mathematical analysis. Journal of computational neuroscience. 14 [PubMed]

Traub RD et al. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. Journal of neurophysiology. 93 [PubMed]

Varela JA et al. (1997). A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]

Vasilaki E, Giugliano M. (2014). Emergence of connectivity motifs in networks of model neurons with short- and long-term plastic synapses. PloS one. 9 [PubMed]

Veredas FJ, Vico FJ, Alonso JM. (2005). Factors determining the precision of the correlated firing generated by a monosynaptic connection in the cat visual pathway. The Journal of physiology. 567 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.